aboutsummaryrefslogtreecommitdiffstats
path: root/raylib/src/extras/physac.h
blob: 3ab427acdf3d18b1386091248e0b9e654d4bf7c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
/**********************************************************************************************
*
*   Physac v1.1 - 2D Physics library for videogames
*
*   DESCRIPTION:
*
*   Physac is a small 2D physics engine written in pure C. The engine uses a fixed time-step thread loop
*   to simulate physics. A physics step contains the following phases: get collision information,
*   apply dynamics, collision solving and position correction. It uses a very simple struct for physic
*   bodies with a position vector to be used in any 3D rendering API.
*
*   CONFIGURATION:
*
*   #define PHYSAC_IMPLEMENTATION
*       Generates the implementation of the library into the included file.
*       If not defined, the library is in header only mode and can be included in other headers
*       or source files without problems. But only ONE file should hold the implementation.
*
*   #define PHYSAC_DEBUG
*       Show debug traces log messages about physic bodies creation/destruction, physic system errors,
*       some calculations results and NULL reference exceptions.
*
*   #define PHYSAC_AVOID_TIMMING_SYSTEM
*       Disables internal timming system, used by UpdatePhysics() to launch timmed physic steps,
*       it allows just running UpdatePhysics() automatically on a separate thread at a desired time step.
*       In case physics steps update needs to be controlled by user with a custom timming mechanism,
*       just define this flag and the internal timming mechanism will be avoided, in that case,
*       timming libraries are neither required by the module.
*
*   #define PHYSAC_MALLOC()
*   #define PHYSAC_CALLOC()
*   #define PHYSAC_FREE()
*       You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
*       Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
*
*   COMPILATION:
*
*   Use the following code to compile with GCC:
*       gcc -o $(NAME_PART).exe $(FILE_NAME) -s -static -lraylib -lopengl32 -lgdi32 -lwinmm -std=c99
*
*   VERSIONS HISTORY:
*       1.1 (20-Jan-2021) @raysan5: Library general revision 
*               Removed threading system (up to the user)
*               Support MSVC C++ compilation using CLITERAL()
*               Review DEBUG mechanism for TRACELOG() and all TRACELOG() messages
*               Review internal variables/functions naming for consistency
*               Allow option to avoid internal timming system, to allow app manage the steps
*       1.0 (12-Jun-2017) First release of the library
*
*
*   LICENSE: zlib/libpng
*
*   Copyright (c) 2016-2022 Victor Fisac (@victorfisac) and Ramon Santamaria (@raysan5)
*
*   This software is provided "as-is", without any express or implied warranty. In no event
*   will the authors be held liable for any damages arising from the use of this software.
*
*   Permission is granted to anyone to use this software for any purpose, including commercial
*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
*     1. The origin of this software must not be misrepresented; you must not claim that you
*     wrote the original software. If you use this software in a product, an acknowledgment
*     in the product documentation would be appreciated but is not required.
*
*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
*     as being the original software.
*
*     3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/

#if !defined(PHYSAC_H)
#define PHYSAC_H

// Function specifiers in case library is build/used as a shared library (Windows)
// NOTE: Microsoft specifiers to tell compiler that symbols are imported/exported from a .dll
#if defined(_WIN32)
    #if defined(BUILD_LIBTYPE_SHARED)
        #define PHYSACDEF __declspec(dllexport)     // We are building the library as a Win32 shared library (.dll)
    #elif defined(USE_LIBTYPE_SHARED)
        #define PHYSACDEF __declspec(dllimport)     // We are using the library as a Win32 shared library (.dll)
    #endif
#endif

#ifndef PHYSACDEF
    #define PHYSACDEF       // We are building or using physac as a static library
#endif

// Allow custom memory allocators
#ifndef PHYSAC_MALLOC
    #define PHYSAC_MALLOC(size)         malloc(size)
#endif
#ifndef PHYSAC_CALLOC
    #define PHYSAC_CALLOC(size, n)      calloc(size, n)
#endif
#ifndef PHYSAC_FREE
    #define PHYSAC_FREE(ptr)            free(ptr)
#endif

//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define PHYSAC_MAX_BODIES               64          // Maximum number of physic bodies supported
#define PHYSAC_MAX_MANIFOLDS            4096        // Maximum number of physic bodies interactions (64x64)
#define PHYSAC_MAX_VERTICES             24          // Maximum number of vertex for polygons shapes
#define PHYSAC_DEFAULT_CIRCLE_VERTICES  24          // Default number of vertices for circle shapes

#define PHYSAC_COLLISION_ITERATIONS     100
#define PHYSAC_PENETRATION_ALLOWANCE    0.05f
#define PHYSAC_PENETRATION_CORRECTION   0.4f

#define PHYSAC_PI                       3.14159265358979323846f
#define PHYSAC_DEG2RAD                  (PHYSAC_PI/180.0f)

//----------------------------------------------------------------------------------
// Data Types Structure Definition
//----------------------------------------------------------------------------------
#if defined(__STDC__) && __STDC_VERSION__ >= 199901L
    #include <stdbool.h>
#endif

typedef enum PhysicsShapeType { PHYSICS_CIRCLE = 0, PHYSICS_POLYGON } PhysicsShapeType;

// Previously defined to be used in PhysicsShape struct as circular dependencies
typedef struct PhysicsBodyData *PhysicsBody;

#if !defined(RL_VECTOR2_TYPE)
// Vector2 type
typedef struct Vector2 {
    float x;
    float y;
} Vector2;
#endif

// Matrix2x2 type (used for polygon shape rotation matrix)
typedef struct Matrix2x2 {
    float m00;
    float m01;
    float m10;
    float m11;
} Matrix2x2;

typedef struct PhysicsVertexData {
    unsigned int vertexCount;                   // Vertex count (positions and normals)
    Vector2 positions[PHYSAC_MAX_VERTICES];     // Vertex positions vectors
    Vector2 normals[PHYSAC_MAX_VERTICES];       // Vertex normals vectors
} PhysicsVertexData;

typedef struct PhysicsShape {
    PhysicsShapeType type;                      // Shape type (circle or polygon)
    PhysicsBody body;                           // Shape physics body data pointer
    PhysicsVertexData vertexData;               // Shape vertices data (used for polygon shapes)
    float radius;                               // Shape radius (used for circle shapes)
    Matrix2x2 transform;                        // Vertices transform matrix 2x2
} PhysicsShape;

typedef struct PhysicsBodyData {
    unsigned int id;                            // Unique identifier
    bool enabled;                               // Enabled dynamics state (collisions are calculated anyway)
    Vector2 position;                           // Physics body shape pivot
    Vector2 velocity;                           // Current linear velocity applied to position
    Vector2 force;                              // Current linear force (reset to 0 every step)
    float angularVelocity;                      // Current angular velocity applied to orient
    float torque;                               // Current angular force (reset to 0 every step)
    float orient;                               // Rotation in radians
    float inertia;                              // Moment of inertia
    float inverseInertia;                       // Inverse value of inertia
    float mass;                                 // Physics body mass
    float inverseMass;                          // Inverse value of mass
    float staticFriction;                       // Friction when the body has not movement (0 to 1)
    float dynamicFriction;                      // Friction when the body has movement (0 to 1)
    float restitution;                          // Restitution coefficient of the body (0 to 1)
    bool useGravity;                            // Apply gravity force to dynamics
    bool isGrounded;                            // Physics grounded on other body state
    bool freezeOrient;                          // Physics rotation constraint
    PhysicsShape shape;                         // Physics body shape information (type, radius, vertices, transform)
} PhysicsBodyData;

typedef struct PhysicsManifoldData {
    unsigned int id;                            // Unique identifier
    PhysicsBody bodyA;                          // Manifold first physics body reference
    PhysicsBody bodyB;                          // Manifold second physics body reference
    float penetration;                          // Depth of penetration from collision
    Vector2 normal;                             // Normal direction vector from 'a' to 'b'
    Vector2 contacts[2];                        // Points of contact during collision
    unsigned int contactsCount;                 // Current collision number of contacts
    float restitution;                          // Mixed restitution during collision
    float dynamicFriction;                      // Mixed dynamic friction during collision
    float staticFriction;                       // Mixed static friction during collision
} PhysicsManifoldData, *PhysicsManifold;

//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------

#if defined(__cplusplus)
extern "C" {            // Prevents name mangling of functions
#endif
// Physics system management
PHYSACDEF void InitPhysics(void);                                                                           // Initializes physics system
PHYSACDEF void UpdatePhysics(void);                                                                         // Update physics system
PHYSACDEF void ResetPhysics(void);                                                                          // Reset physics system (global variables)
PHYSACDEF void ClosePhysics(void);                                                                          // Close physics system and unload used memory
PHYSACDEF void SetPhysicsTimeStep(double delta);                                                            // Sets physics fixed time step in milliseconds. 1.666666 by default
PHYSACDEF void SetPhysicsGravity(float x, float y);                                                         // Sets physics global gravity force

// Physic body creation/destroy
PHYSACDEF PhysicsBody CreatePhysicsBodyCircle(Vector2 pos, float radius, float density);                    // Creates a new circle physics body with generic parameters
PHYSACDEF PhysicsBody CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density);    // Creates a new rectangle physics body with generic parameters
PHYSACDEF PhysicsBody CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density);        // Creates a new polygon physics body with generic parameters
PHYSACDEF void DestroyPhysicsBody(PhysicsBody body);                                                        // Destroy a physics body

// Physic body forces
PHYSACDEF void PhysicsAddForce(PhysicsBody body, Vector2 force);                                            // Adds a force to a physics body
PHYSACDEF void PhysicsAddTorque(PhysicsBody body, float amount);                                            // Adds an angular force to a physics body
PHYSACDEF void PhysicsShatter(PhysicsBody body, Vector2 position, float force);                             // Shatters a polygon shape physics body to little physics bodies with explosion force
PHYSACDEF void SetPhysicsBodyRotation(PhysicsBody body, float radians);                                     // Sets physics body shape transform based on radians parameter

// Query physics info
PHYSACDEF PhysicsBody GetPhysicsBody(int index);                                                            // Returns a physics body of the bodies pool at a specific index
PHYSACDEF int GetPhysicsBodiesCount(void);                                                                  // Returns the current amount of created physics bodies
PHYSACDEF int GetPhysicsShapeType(int index);                                                               // Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
PHYSACDEF int GetPhysicsShapeVerticesCount(int index);                                                      // Returns the amount of vertices of a physics body shape
PHYSACDEF Vector2 GetPhysicsShapeVertex(PhysicsBody body, int vertex);                                      // Returns transformed position of a body shape (body position + vertex transformed position)
#if defined(__cplusplus)
}
#endif

#endif // PHYSAC_H

/***********************************************************************************
*
*   PHYSAC IMPLEMENTATION
*
************************************************************************************/

#if defined(PHYSAC_IMPLEMENTATION)

// Support TRACELOG macros
#if defined(PHYSAC_DEBUG)
    #include <stdio.h>              // Required for: printf()
    #define TRACELOG(...) printf(__VA_ARGS__)
#else
    #define TRACELOG(...) (void)0;
#endif

#include <stdlib.h>                 // Required for: malloc(), calloc(), free()
#include <math.h>                   // Required for: cosf(), sinf(), fabs(), sqrtf()

#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
    // Time management functionality
    #include <time.h>               // Required for: time(), clock_gettime()
    #if defined(_WIN32)
        #if defined(__cplusplus)
        extern "C" {        // Prevents name mangling of functions
        #endif
        // Functions required to query time on Windows
        int __stdcall QueryPerformanceCounter(unsigned long long int *lpPerformanceCount);
        int __stdcall QueryPerformanceFrequency(unsigned long long int *lpFrequency);
        #if defined(__cplusplus)
        }
        #endif
    #endif
    #if defined(__linux__) || defined(__FreeBSD__)
        #if _POSIX_C_SOURCE < 199309L
            #undef _POSIX_C_SOURCE
            #define _POSIX_C_SOURCE 199309L // Required for CLOCK_MONOTONIC if compiled with c99 without gnu ext.
        #endif
        #include <sys/time.h>           // Required for: timespec
    #endif
    #if defined(__APPLE__)              // macOS also defines __MACH__
        #include <mach/mach_time.h>     // Required for: mach_absolute_time()
    #endif
#endif

// NOTE: MSVC C++ compiler does not support compound literals (C99 feature)
// Plain structures in C++ (without constructors) can be initialized from { } initializers.
#if defined(__cplusplus)
    #define CLITERAL(type)      type
#else
    #define CLITERAL(type)      (type)
#endif

//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define PHYSAC_MIN(a,b)         (((a)<(b))?(a):(b))
#define PHYSAC_MAX(a,b)         (((a)>(b))?(a):(b))
#define PHYSAC_FLT_MAX          3.402823466e+38f
#define PHYSAC_EPSILON          0.000001f
#define PHYSAC_K                1.0f/3.0f
#define PHYSAC_VECTOR_ZERO      CLITERAL(Vector2){ 0.0f, 0.0f }

//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static double deltaTime = 1.0/60.0/10.0 * 1000;             // Delta time in milliseconds used for physics steps

#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Time measure variables
static double baseClockTicks = 0.0;                         // Offset clock ticks for MONOTONIC clock
static unsigned long long int frequency = 0;                // Hi-res clock frequency
static double startTime = 0.0;                              // Start time in milliseconds
static double currentTime = 0.0;                            // Current time in milliseconds
#endif

// Physics system configuration
static PhysicsBody bodies[PHYSAC_MAX_BODIES];               // Physics bodies pointers array
static unsigned int physicsBodiesCount = 0;                 // Physics world current bodies counter
static PhysicsManifold contacts[PHYSAC_MAX_MANIFOLDS];      // Physics bodies pointers array
static unsigned int physicsManifoldsCount = 0;              // Physics world current manifolds counter

static Vector2 gravityForce = { 0.0f, 9.81f };              // Physics world gravity force

// Utilities variables
static unsigned int usedMemory = 0;                         // Total allocated dynamic memory

//----------------------------------------------------------------------------------
// Module Internal Functions Declaration
//----------------------------------------------------------------------------------
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Timming measure functions
static void InitTimerHiRes(void);                                                                           // Initializes hi-resolution MONOTONIC timer
static unsigned long long int GetClockTicks(void);                                                          // Get hi-res MONOTONIC time measure in mseconds
static double GetCurrentTime(void);                                                                         // Get current time measure in milliseconds
#endif

static void UpdatePhysicsStep(void);                                                                        // Update physics step (dynamics, collisions and position corrections)

static int FindAvailableBodyIndex();                                                                        // Finds a valid index for a new physics body initialization
static int FindAvailableManifoldIndex();                                                                    // Finds a valid index for a new manifold initialization
static PhysicsVertexData CreateDefaultPolygon(float radius, int sides);                                     // Creates a random polygon shape with max vertex distance from polygon pivot
static PhysicsVertexData CreateRectanglePolygon(Vector2 pos, Vector2 size);                                 // Creates a rectangle polygon shape based on a min and max positions

static void InitializePhysicsManifolds(PhysicsManifold manifold);                                           // Initializes physics manifolds to solve collisions
static PhysicsManifold CreatePhysicsManifold(PhysicsBody a, PhysicsBody b);                                 // Creates a new physics manifold to solve collision
static void DestroyPhysicsManifold(PhysicsManifold manifold);                                               // Unitializes and destroys a physics manifold

static void SolvePhysicsManifold(PhysicsManifold manifold);                                                 // Solves a created physics manifold between two physics bodies
static void SolveCircleToCircle(PhysicsManifold manifold);                                                  // Solves collision between two circle shape physics bodies
static void SolveCircleToPolygon(PhysicsManifold manifold);                                                 // Solves collision between a circle to a polygon shape physics bodies
static void SolvePolygonToCircle(PhysicsManifold manifold);                                                 // Solves collision between a polygon to a circle shape physics bodies
static void SolvePolygonToPolygon(PhysicsManifold manifold);                                                // Solves collision between two polygons shape physics bodies
static void IntegratePhysicsForces(PhysicsBody body);                                                       // Integrates physics forces into velocity
static void IntegratePhysicsVelocity(PhysicsBody body);                                                     // Integrates physics velocity into position and forces
static void IntegratePhysicsImpulses(PhysicsManifold manifold);                                             // Integrates physics collisions impulses to solve collisions
static void CorrectPhysicsPositions(PhysicsManifold manifold);                                              // Corrects physics bodies positions based on manifolds collision information
static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index);      // Finds two polygon shapes incident face
static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB);            // Finds polygon shapes axis least penetration

// Math required functions
static Vector2 MathVector2Product(Vector2 vector, float value);                                             // Returns the product of a vector and a value
static float MathVector2CrossProduct(Vector2 v1, Vector2 v2);                                               // Returns the cross product of two vectors
static float MathVector2SqrLen(Vector2 vector);                                                             // Returns the len square root of a vector
static float MathVector2DotProduct(Vector2 v1, Vector2 v2);                                                 // Returns the dot product of two vectors
static inline float MathVector2SqrDistance(Vector2 v1, Vector2 v2);                                         // Returns the square root of distance between two vectors
static void MathVector2Normalize(Vector2 *vector);                                                          // Returns the normalized values of a vector
static Vector2 MathVector2Add(Vector2 v1, Vector2 v2);                                                      // Returns the sum of two given vectors
static Vector2 MathVector2Subtract(Vector2 v1, Vector2 v2);                                                 // Returns the subtract of two given vectors
static Matrix2x2 MathMatFromRadians(float radians);                                                         // Returns a matrix 2x2 from a given radians value
static inline Matrix2x2 MathMatTranspose(Matrix2x2 matrix);                                                 // Returns the transpose of a given matrix 2x2
static inline Vector2 MathMatVector2Product(Matrix2x2 matrix, Vector2 vector);                              // Returns product between matrix 2x2 and vector
static int MathVector2Clip(Vector2 normal, Vector2 *faceA, Vector2 *faceB, float clip);                     // Returns clipping value based on a normal and two faces
static Vector2 MathTriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3);                                  // Returns the barycenter of a triangle given by 3 points

//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------

// Initializes physics values, pointers and creates physics loop thread
void InitPhysics(void)
{
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
    // Initialize high resolution timer
    InitTimerHiRes();
#endif

    TRACELOG("[PHYSAC] Physics module initialized successfully\n");
}

// Sets physics global gravity force
void SetPhysicsGravity(float x, float y)
{
    gravityForce.x = x;
    gravityForce.y = y;
}

// Creates a new circle physics body with generic parameters
PhysicsBody CreatePhysicsBodyCircle(Vector2 pos, float radius, float density)
{
    PhysicsBody body = CreatePhysicsBodyPolygon(pos, radius, PHYSAC_DEFAULT_CIRCLE_VERTICES, density);
    return body;
}

// Creates a new rectangle physics body with generic parameters
PhysicsBody CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density)
{
    // NOTE: Make sure body data is initialized to 0
    PhysicsBody body = (PhysicsBody)PHYSAC_CALLOC(sizeof(PhysicsBodyData), 1);
    usedMemory += sizeof(PhysicsBodyData);

    int id = FindAvailableBodyIndex();
    if (id != -1)
    {
        // Initialize new body with generic values
        body->id = id;
        body->enabled = true;
        body->position = pos;
        body->shape.type = PHYSICS_POLYGON;
        body->shape.body = body;
        body->shape.transform = MathMatFromRadians(0.0f);
        body->shape.vertexData = CreateRectanglePolygon(pos, CLITERAL(Vector2){ width, height });

        // Calculate centroid and moment of inertia
        Vector2 center = { 0.0f, 0.0f };
        float area = 0.0f;
        float inertia = 0.0f;

        for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
        {
            // Triangle vertices, third vertex implied as (0, 0)
            Vector2 p1 = body->shape.vertexData.positions[i];
            unsigned int nextIndex = (((i + 1) < body->shape.vertexData.vertexCount) ? (i + 1) : 0);
            Vector2 p2 = body->shape.vertexData.positions[nextIndex];

            float D = MathVector2CrossProduct(p1, p2);
            float triangleArea = D/2;

            area += triangleArea;

            // Use area to weight the centroid average, not just vertex position
            center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
            center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);

            float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
            float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
            inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
        }

        center.x *= 1.0f/area;
        center.y *= 1.0f/area;

        // Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
        // Note: this is not really necessary
        for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
        {
            body->shape.vertexData.positions[i].x -= center.x;
            body->shape.vertexData.positions[i].y -= center.y;
        }

        body->mass = density*area;
        body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
        body->inertia = density*inertia;
        body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
        body->staticFriction = 0.4f;
        body->dynamicFriction = 0.2f;
        body->restitution = 0.0f;
        body->useGravity = true;
        body->isGrounded = false;
        body->freezeOrient = false;

        // Add new body to bodies pointers array and update bodies count
        bodies[physicsBodiesCount] = body;
        physicsBodiesCount++;

        TRACELOG("[PHYSAC] Physic body created successfully (id: %i)\n", body->id);
    }
    else TRACELOG("[PHYSAC] Physic body could not be created, PHYSAC_MAX_BODIES reached\n");

    return body;
}

// Creates a new polygon physics body with generic parameters
PhysicsBody CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density)
{
    PhysicsBody body = (PhysicsBody)PHYSAC_MALLOC(sizeof(PhysicsBodyData));
    usedMemory += sizeof(PhysicsBodyData);

    int id = FindAvailableBodyIndex();
    if (id != -1)
    {
        // Initialize new body with generic values
        body->id = id;
        body->enabled = true;
        body->position = pos;
        body->velocity = PHYSAC_VECTOR_ZERO;
        body->force = PHYSAC_VECTOR_ZERO;
        body->angularVelocity = 0.0f;
        body->torque = 0.0f;
        body->orient = 0.0f;
        body->shape.type = PHYSICS_POLYGON;
        body->shape.body = body;
        body->shape.transform = MathMatFromRadians(0.0f);
        body->shape.vertexData = CreateDefaultPolygon(radius, sides);

        // Calculate centroid and moment of inertia
        Vector2 center = { 0.0f, 0.0f };
        float area = 0.0f;
        float inertia = 0.0f;

        for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
        {
            // Triangle vertices, third vertex implied as (0, 0)
            Vector2 position1 = body->shape.vertexData.positions[i];
            unsigned int nextIndex = (((i + 1) < body->shape.vertexData.vertexCount) ? (i + 1) : 0);
            Vector2 position2 = body->shape.vertexData.positions[nextIndex];

            float cross = MathVector2CrossProduct(position1, position2);
            float triangleArea = cross/2;

            area += triangleArea;

            // Use area to weight the centroid average, not just vertex position
            center.x += triangleArea*PHYSAC_K*(position1.x + position2.x);
            center.y += triangleArea*PHYSAC_K*(position1.y + position2.y);

            float intx2 = position1.x*position1.x + position2.x*position1.x + position2.x*position2.x;
            float inty2 = position1.y*position1.y + position2.y*position1.y + position2.y*position2.y;
            inertia += (0.25f*PHYSAC_K*cross)*(intx2 + inty2);
        }

        center.x *= 1.0f/area;
        center.y *= 1.0f/area;

        // Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
        // Note: this is not really necessary
        for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
        {
            body->shape.vertexData.positions[i].x -= center.x;
            body->shape.vertexData.positions[i].y -= center.y;
        }

        body->mass = density*area;
        body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
        body->inertia = density*inertia;
        body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
        body->staticFriction = 0.4f;
        body->dynamicFriction = 0.2f;
        body->restitution = 0.0f;
        body->useGravity = true;
        body->isGrounded = false;
        body->freezeOrient = false;

        // Add new body to bodies pointers array and update bodies count
        bodies[physicsBodiesCount] = body;
        physicsBodiesCount++;

        TRACELOG("[PHYSAC] Physic body created successfully (id: %i)\n", body->id);
    }
    else TRACELOG("[PHYSAC] Physics body could not be created, PHYSAC_MAX_BODIES reached\n");

    return body;
}

// Adds a force to a physics body
void PhysicsAddForce(PhysicsBody body, Vector2 force)
{
    if (body != NULL) body->force = MathVector2Add(body->force, force);
}

// Adds an angular force to a physics body
void PhysicsAddTorque(PhysicsBody body, float amount)
{
    if (body != NULL) body->torque += amount;
}

// Shatters a polygon shape physics body to little physics bodies with explosion force
void PhysicsShatter(PhysicsBody body, Vector2 position, float force)
{
    if (body != NULL)
    {
        if (body->shape.type == PHYSICS_POLYGON)
        {
            PhysicsVertexData vertexData = body->shape.vertexData;
            bool collision = false;

            for (unsigned int i = 0; i < vertexData.vertexCount; i++)
            {
                Vector2 positionA = body->position;
                Vector2 positionB = MathMatVector2Product(body->shape.transform, MathVector2Add(body->position, vertexData.positions[i]));
                unsigned int nextIndex = (((i + 1) < vertexData.vertexCount) ? (i + 1) : 0);
                Vector2 positionC = MathMatVector2Product(body->shape.transform, MathVector2Add(body->position, vertexData.positions[nextIndex]));

                // Check collision between each triangle
                float alpha = ((positionB.y - positionC.y)*(position.x - positionC.x) + (positionC.x - positionB.x)*(position.y - positionC.y))/
                              ((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));

                float beta = ((positionC.y - positionA.y)*(position.x - positionC.x) + (positionA.x - positionC.x)*(position.y - positionC.y))/
                             ((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));

                float gamma = 1.0f - alpha - beta;

                if ((alpha > 0.0f) && (beta > 0.0f) & (gamma > 0.0f))
                {
                    collision = true;
                    break;
                }
            }

            if (collision)
            {
                int count = vertexData.vertexCount;
                Vector2 bodyPos = body->position;
                Vector2 *vertices = (Vector2 *)PHYSAC_MALLOC(sizeof(Vector2)*count);
                Matrix2x2 trans = body->shape.transform;
                for (int i = 0; i < count; i++) vertices[i] = vertexData.positions[i];

                // Destroy shattered physics body
                DestroyPhysicsBody(body);

                for (int i = 0; i < count; i++)
                {
                    int nextIndex = (((i + 1) < count) ? (i + 1) : 0);
                    Vector2 center = MathTriangleBarycenter(vertices[i], vertices[nextIndex], PHYSAC_VECTOR_ZERO);
                    center = MathVector2Add(bodyPos, center);
                    Vector2 offset = MathVector2Subtract(center, bodyPos);

                    PhysicsBody body = CreatePhysicsBodyPolygon(center, 10, 3, 10);     // Create polygon physics body with relevant values

                    PhysicsVertexData vertexData = { 0 };
                    vertexData.vertexCount = 3;

                    vertexData.positions[0] = MathVector2Subtract(vertices[i], offset);
                    vertexData.positions[1] = MathVector2Subtract(vertices[nextIndex], offset);
                    vertexData.positions[2] = MathVector2Subtract(position, center);

                    // Separate vertices to avoid unnecessary physics collisions
                    vertexData.positions[0].x *= 0.95f;
                    vertexData.positions[0].y *= 0.95f;
                    vertexData.positions[1].x *= 0.95f;
                    vertexData.positions[1].y *= 0.95f;
                    vertexData.positions[2].x *= 0.95f;
                    vertexData.positions[2].y *= 0.95f;

                    // Calculate polygon faces normals
                    for (unsigned int j = 0; j < vertexData.vertexCount; j++)
                    {
                        unsigned int nextVertex = (((j + 1) < vertexData.vertexCount) ? (j + 1) : 0);
                        Vector2 face = MathVector2Subtract(vertexData.positions[nextVertex], vertexData.positions[j]);

                        vertexData.normals[j] = CLITERAL(Vector2){ face.y, -face.x };
                        MathVector2Normalize(&vertexData.normals[j]);
                    }

                    // Apply computed vertex data to new physics body shape
                    body->shape.vertexData = vertexData;
                    body->shape.transform = trans;

                    // Calculate centroid and moment of inertia
                    center = PHYSAC_VECTOR_ZERO;
                    float area = 0.0f;
                    float inertia = 0.0f;

                    for (unsigned int j = 0; j < body->shape.vertexData.vertexCount; j++)
                    {
                        // Triangle vertices, third vertex implied as (0, 0)
                        Vector2 p1 = body->shape.vertexData.positions[j];
                        unsigned int nextVertex = (((j + 1) < body->shape.vertexData.vertexCount) ? (j + 1) : 0);
                        Vector2 p2 = body->shape.vertexData.positions[nextVertex];

                        float D = MathVector2CrossProduct(p1, p2);
                        float triangleArea = D/2;

                        area += triangleArea;

                        // Use area to weight the centroid average, not just vertex position
                        center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
                        center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);

                        float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
                        float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
                        inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
                    }

                    center.x *= 1.0f/area;
                    center.y *= 1.0f/area;

                    body->mass = area;
                    body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
                    body->inertia = inertia;
                    body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);

                    // Calculate explosion force direction
                    Vector2 pointA = body->position;
                    Vector2 pointB = MathVector2Subtract(vertexData.positions[1], vertexData.positions[0]);
                    pointB.x /= 2.0f;
                    pointB.y /= 2.0f;
                    Vector2 forceDirection = MathVector2Subtract(MathVector2Add(pointA, MathVector2Add(vertexData.positions[0], pointB)), body->position);
                    MathVector2Normalize(&forceDirection);
                    forceDirection.x *= force;
                    forceDirection.y *= force;

                    // Apply force to new physics body
                    PhysicsAddForce(body, forceDirection);
                }

                PHYSAC_FREE(vertices);
            }
        }
    }
    else TRACELOG("[PHYSAC] WARNING: PhysicsShatter: NULL physic body\n");
}

// Returns the current amount of created physics bodies
int GetPhysicsBodiesCount(void)
{
    return physicsBodiesCount;
}

// Returns a physics body of the bodies pool at a specific index
PhysicsBody GetPhysicsBody(int index)
{
    PhysicsBody body = NULL;

    if (index < (int)physicsBodiesCount)
    {
        body = bodies[index];

        if (body == NULL) TRACELOG("[PHYSAC] WARNING: GetPhysicsBody: NULL physic body\n");
    }
    else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");

    return body;
}

// Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
int GetPhysicsShapeType(int index)
{
    int result = -1;

    if (index < (int)physicsBodiesCount)
    {
        PhysicsBody body = bodies[index];

        if (body != NULL) result = body->shape.type;
        else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeType: NULL physic body\n");
    }
    else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");

    return result;
}

// Returns the amount of vertices of a physics body shape
int GetPhysicsShapeVerticesCount(int index)
{
    int result = 0;

    if (index < (int)physicsBodiesCount)
    {
        PhysicsBody body = bodies[index];

        if (body != NULL)
        {
            switch (body->shape.type)
            {
                case PHYSICS_CIRCLE: result = PHYSAC_DEFAULT_CIRCLE_VERTICES; break;
                case PHYSICS_POLYGON: result = body->shape.vertexData.vertexCount; break;
                default: break;
            }
        }
        else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeVerticesCount: NULL physic body\n");
    }
    else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");

    return result;
}

// Returns transformed position of a body shape (body position + vertex transformed position)
Vector2 GetPhysicsShapeVertex(PhysicsBody body, int vertex)
{
    Vector2 position = { 0.0f, 0.0f };

    if (body != NULL)
    {
        switch (body->shape.type)
        {
            case PHYSICS_CIRCLE:
            {
                position.x = body->position.x + cosf(360.0f/PHYSAC_DEFAULT_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
                position.y = body->position.y + sinf(360.0f/PHYSAC_DEFAULT_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
            } break;
            case PHYSICS_POLYGON:
            {
                PhysicsVertexData vertexData = body->shape.vertexData;
                position = MathVector2Add(body->position, MathMatVector2Product(body->shape.transform, vertexData.positions[vertex]));
            } break;
            default: break;
        }
    }
    else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeVertex: NULL physic body\n");

    return position;
}

// Sets physics body shape transform based on radians parameter
void SetPhysicsBodyRotation(PhysicsBody body, float radians)
{
    if (body != NULL)
    {
        body->orient = radians;

        if (body->shape.type == PHYSICS_POLYGON) body->shape.transform = MathMatFromRadians(radians);
    }
}

// Unitializes and destroys a physics body
void DestroyPhysicsBody(PhysicsBody body)
{
    if (body != NULL)
    {
        int id = body->id;
        int index = -1;

        for (unsigned int i = 0; i < physicsBodiesCount; i++)
        {
            if (bodies[i]->id == id)
            {
                index = i;
                break;
            }
        }

        if (index == -1)
        {
            TRACELOG("[PHYSAC] WARNING: Requested body (id: %i) can not be found\n", id);
            return;     // Prevent access to index -1
        }

        // Free body allocated memory
        PHYSAC_FREE(body);
        usedMemory -= sizeof(PhysicsBodyData);
        bodies[index] = NULL;

        // Reorder physics bodies pointers array and its catched index
        for (unsigned int i = index; i < physicsBodiesCount; i++)
        {
            if ((i + 1) < physicsBodiesCount) bodies[i] = bodies[i + 1];
        }

        // Update physics bodies count
        physicsBodiesCount--;

        TRACELOG("[PHYSAC] Physic body destroyed successfully (id: %i)\n", id);
    }
    else TRACELOG("[PHYSAC] WARNING: DestroyPhysicsBody: NULL physic body\n");
}

// Destroys created physics bodies and manifolds and resets global values
void ResetPhysics(void)
{
    if (physicsBodiesCount > 0)
    {
        // Unitialize physics bodies dynamic memory allocations
        for (int i = physicsBodiesCount - 1; i >= 0; i--)
        {
            PhysicsBody body = bodies[i];

            if (body != NULL)
            {
                PHYSAC_FREE(body);
                bodies[i] = NULL;
                usedMemory -= sizeof(PhysicsBodyData);
            }
        }

        physicsBodiesCount = 0;
    }

    if (physicsManifoldsCount > 0)
    {
        // Unitialize physics manifolds dynamic memory allocations
        for (int i = physicsManifoldsCount - 1; i >= 0; i--)
        {
            PhysicsManifold manifold = contacts[i];

            if (manifold != NULL)
            {
                PHYSAC_FREE(manifold);
                contacts[i] = NULL;
                usedMemory -= sizeof(PhysicsManifoldData);
            }
        }

        physicsManifoldsCount = 0;
    }

    TRACELOG("[PHYSAC] Physics module reseted successfully\n");
}

// Unitializes physics pointers and exits physics loop thread
void ClosePhysics(void)
{
    // Unitialize physics manifolds dynamic memory allocations
    if (physicsManifoldsCount > 0)
    {
        for (int i = physicsManifoldsCount - 1; i >= 0; i--) DestroyPhysicsManifold(contacts[i]);
    }
    
    // Unitialize physics bodies dynamic memory allocations
    if (physicsBodiesCount > 0)
    {
        for (int i = physicsBodiesCount - 1; i >= 0; i--) DestroyPhysicsBody(bodies[i]);
    }

    // Trace log info
    if ((physicsBodiesCount > 0) || (usedMemory != 0)) 
    {
        TRACELOG("[PHYSAC] WARNING: Physics module closed with unallocated bodies (BODIES: %i, MEMORY: %i bytes)\n", physicsBodiesCount, usedMemory);
    }
    else if ((physicsManifoldsCount > 0) || (usedMemory != 0)) 
    {
        TRACELOG("[PHYSAC] WARNING: Pysics module closed with unallocated manifolds (MANIFOLDS: %i, MEMORY: %i bytes)\n", physicsManifoldsCount, usedMemory);
    }
    else TRACELOG("[PHYSAC] Physics module closed successfully\n");
}

// Update physics system
// Physics steps are launched at a fixed time step if enabled
void UpdatePhysics(void)
{
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
    static double deltaTimeAccumulator = 0.0;

    // Calculate current time (ms)
    currentTime = GetCurrentTime();

    // Calculate current delta time (ms)
    const double delta = currentTime - startTime;

    // Store the time elapsed since the last frame began
    deltaTimeAccumulator += delta;

    // Fixed time stepping loop
    while (deltaTimeAccumulator >= deltaTime)
    {
        UpdatePhysicsStep();
        deltaTimeAccumulator -= deltaTime;
    }

    // Record the starting of this frame
    startTime = currentTime;
#else
    UpdatePhysicsStep();
#endif
}

void SetPhysicsTimeStep(double delta)
{
    deltaTime = delta;
}

//----------------------------------------------------------------------------------
// Module Internal Functions Definition
//----------------------------------------------------------------------------------
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Initializes hi-resolution MONOTONIC timer
static void InitTimerHiRes(void)
{
#if defined(_WIN32)
    QueryPerformanceFrequency((unsigned long long int *) &frequency);
#endif

#if defined(__EMSCRIPTEN__) || defined(__linux__)
    struct timespec now;
    if (clock_gettime(CLOCK_MONOTONIC, &now) == 0) frequency = 1000000000;
#endif

#if defined(__APPLE__)
    mach_timebase_info_data_t timebase;
    mach_timebase_info(&timebase);
    frequency = (timebase.denom*1e9)/timebase.numer;
#endif

    baseClockTicks = (double)GetClockTicks();      // Get MONOTONIC clock time offset
    startTime = GetCurrentTime();                  // Get current time in milliseconds
}

// Get hi-res MONOTONIC time measure in clock ticks
static unsigned long long int GetClockTicks(void)
{
    unsigned long long int value = 0;

#if defined(_WIN32)
    QueryPerformanceCounter((unsigned long long int *) &value);
#endif

#if defined(__linux__)
    struct timespec now;
    clock_gettime(CLOCK_MONOTONIC, &now);
    value = (unsigned long long int)now.tv_sec*(unsigned long long int)1000000000 + (unsigned long long int)now.tv_nsec;
#endif

#if defined(__APPLE__)
    value = mach_absolute_time();
#endif

    return value;
}

// Get current time in milliseconds
static double GetCurrentTime(void)
{
    return (double)(GetClockTicks() - baseClockTicks)/frequency*1000;
}
#endif // !PHYSAC_AVOID_TIMMING_SYSTEM

// Update physics step (dynamics, collisions and position corrections)
static void UpdatePhysicsStep(void)
{
    // Clear previous generated collisions information
    for (int i = (int)physicsManifoldsCount - 1; i >= 0; i--)
    {
        PhysicsManifold manifold = contacts[i];
        if (manifold != NULL) DestroyPhysicsManifold(manifold);
    }

    // Reset physics bodies grounded state
    for (unsigned int i = 0; i < physicsBodiesCount; i++)
    {
        PhysicsBody body = bodies[i];
        body->isGrounded = false;
    }
 
    // Generate new collision information
    for (unsigned int i = 0; i < physicsBodiesCount; i++)
    {
        PhysicsBody bodyA = bodies[i];

        if (bodyA != NULL)
        {
            for (unsigned int j = i + 1; j < physicsBodiesCount; j++)
            {
                PhysicsBody bodyB = bodies[j];

                if (bodyB != NULL)
                {
                    if ((bodyA->inverseMass == 0) && (bodyB->inverseMass == 0)) continue;

                    PhysicsManifold manifold = CreatePhysicsManifold(bodyA, bodyB);
                    SolvePhysicsManifold(manifold);

                    if (manifold->contactsCount > 0)
                    {
                        // Create a new manifold with same information as previously solved manifold and add it to the manifolds pool last slot
                        PhysicsManifold manifold = CreatePhysicsManifold(bodyA, bodyB);
                        manifold->penetration = manifold->penetration;
                        manifold->normal = manifold->normal;
                        manifold->contacts[0] = manifold->contacts[0];
                        manifold->contacts[1] = manifold->contacts[1];
                        manifold->contactsCount = manifold->contactsCount;
                        manifold->restitution = manifold->restitution;
                        manifold->dynamicFriction = manifold->dynamicFriction;
                        manifold->staticFriction = manifold->staticFriction;
                    }
                }
            }
        }
    }

    // Integrate forces to physics bodies
    for (unsigned int i = 0; i < physicsBodiesCount; i++)
    {
        PhysicsBody body = bodies[i];
        if (body != NULL) IntegratePhysicsForces(body);
    }

    // Initialize physics manifolds to solve collisions
    for (unsigned int i = 0; i < physicsManifoldsCount; i++)
    {
        PhysicsManifold manifold = contacts[i];
        if (manifold != NULL) InitializePhysicsManifolds(manifold);
    }

    // Integrate physics collisions impulses to solve collisions
    for (unsigned int i = 0; i < PHYSAC_COLLISION_ITERATIONS; i++)
    {
        for (unsigned int j = 0; j < physicsManifoldsCount; j++)
        {
            PhysicsManifold manifold = contacts[i];
            if (manifold != NULL) IntegratePhysicsImpulses(manifold);
        }
    }

    // Integrate velocity to physics bodies
    for (unsigned int i = 0; i < physicsBodiesCount; i++)
    {
        PhysicsBody body = bodies[i];
        if (body != NULL) IntegratePhysicsVelocity(body);
    }

    // Correct physics bodies positions based on manifolds collision information
    for (unsigned int i = 0; i < physicsManifoldsCount; i++)
    {
        PhysicsManifold manifold = contacts[i];
        if (manifold != NULL) CorrectPhysicsPositions(manifold);
    }

    // Clear physics bodies forces
    for (unsigned int i = 0; i < physicsBodiesCount; i++)
    {
        PhysicsBody body = bodies[i];
        if (body != NULL)
        {
            body->force = PHYSAC_VECTOR_ZERO;
            body->torque = 0.0f;
        }
    }
}

// Finds a valid index for a new physics body initialization
static int FindAvailableBodyIndex()
{
    int index = -1;
    for (int i = 0; i < PHYSAC_MAX_BODIES; i++)
    {
        int currentId = i;

        // Check if current id already exist in other physics body
        for (unsigned int k = 0; k < physicsBodiesCount; k++)
        {
            if (bodies[k]->id == currentId)
            {
                currentId++;
                break;
            }
        }

        // If it is not used, use it as new physics body id
        if (currentId == (int)i)
        {
            index = (int)i;
            break;
        }
    }

    return index;
}

// Creates a default polygon shape with max vertex distance from polygon pivot
static PhysicsVertexData CreateDefaultPolygon(float radius, int sides)
{
    PhysicsVertexData data = { 0 };
    data.vertexCount = sides;

    // Calculate polygon vertices positions
    for (unsigned int i = 0; i < data.vertexCount; i++)
    {
        data.positions[i].x = (float)cosf(360.0f/sides*i*PHYSAC_DEG2RAD)*radius;
        data.positions[i].y = (float)sinf(360.0f/sides*i*PHYSAC_DEG2RAD)*radius;
    }

    // Calculate polygon faces normals
    for (int i = 0; i < (int)data.vertexCount; i++)
    {
        int nextIndex = (((i + 1) < sides) ? (i + 1) : 0);
        Vector2 face = MathVector2Subtract(data.positions[nextIndex], data.positions[i]);

        data.normals[i] = CLITERAL(Vector2){ face.y, -face.x };
        MathVector2Normalize(&data.normals[i]);
    }

    return data;
}

// Creates a rectangle polygon shape based on a min and max positions
static PhysicsVertexData CreateRectanglePolygon(Vector2 pos, Vector2 size)
{
    PhysicsVertexData data = { 0 };
    data.vertexCount = 4;

    // Calculate polygon vertices positions
    data.positions[0] = CLITERAL(Vector2){ pos.x + size.x/2, pos.y - size.y/2 };
    data.positions[1] = CLITERAL(Vector2){ pos.x + size.x/2, pos.y + size.y/2 };
    data.positions[2] = CLITERAL(Vector2){ pos.x - size.x/2, pos.y + size.y/2 };
    data.positions[3] = CLITERAL(Vector2){ pos.x - size.x/2, pos.y - size.y/2 };

    // Calculate polygon faces normals
    for (unsigned int i = 0; i < data.vertexCount; i++)
    {
        int nextIndex = (((i + 1) < data.vertexCount) ? (i + 1) : 0);
        Vector2 face = MathVector2Subtract(data.positions[nextIndex], data.positions[i]);

        data.normals[i] = CLITERAL(Vector2){ face.y, -face.x };
        MathVector2Normalize(&data.normals[i]);
    }

    return data;
}

// Finds a valid index for a new manifold initialization
static int FindAvailableManifoldIndex()
{
    int index = -1;
    for (int i = 0; i < PHYSAC_MAX_MANIFOLDS; i++)
    {
        int currentId = i;

        // Check if current id already exist in other physics body
        for (unsigned int k = 0; k < physicsManifoldsCount; k++)
        {
            if (contacts[k]->id == currentId)
            {
                currentId++;
                break;
            }
        }

        // If it is not used, use it as new physics body id
        if (currentId == i)
        {
            index = i;
            break;
        }
    }

    return index;
}

// Creates a new physics manifold to solve collision
static PhysicsManifold CreatePhysicsManifold(PhysicsBody a, PhysicsBody b)
{
    PhysicsManifold manifold = (PhysicsManifold)PHYSAC_MALLOC(sizeof(PhysicsManifoldData));
    usedMemory += sizeof(PhysicsManifoldData);

    int id = FindAvailableManifoldIndex();
    if (id != -1)
    {
        // Initialize new manifold with generic values
        manifold->id = id;
        manifold->bodyA = a;
        manifold->bodyB = b;
        manifold->penetration = 0;
        manifold->normal = PHYSAC_VECTOR_ZERO;
        manifold->contacts[0] = PHYSAC_VECTOR_ZERO;
        manifold->contacts[1] = PHYSAC_VECTOR_ZERO;
        manifold->contactsCount = 0;
        manifold->restitution = 0.0f;
        manifold->dynamicFriction = 0.0f;
        manifold->staticFriction = 0.0f;

        // Add new body to bodies pointers array and update bodies count
        contacts[physicsManifoldsCount] = manifold;
        physicsManifoldsCount++;
    }
    else TRACELOG("[PHYSAC] Physic manifold could not be created, PHYSAC_MAX_MANIFOLDS reached\n");

    return manifold;
}

// Unitializes and destroys a physics manifold
static void DestroyPhysicsManifold(PhysicsManifold manifold)
{
    if (manifold != NULL)
    {
        int id = manifold->id;
        int index = -1;

        for (unsigned int i = 0; i < physicsManifoldsCount; i++)
        {
            if (contacts[i]->id == id)
            {
                index = i;
                break;
            }
        }

        if (index == -1) return;     // Prevent access to index -1

        // Free manifold allocated memory
        PHYSAC_FREE(manifold);
        usedMemory -= sizeof(PhysicsManifoldData);
        contacts[index] = NULL;

        // Reorder physics manifolds pointers array and its catched index
        for (unsigned int i = index; i < physicsManifoldsCount; i++)
        {
            if ((i + 1) < physicsManifoldsCount) contacts[i] = contacts[i + 1];
        }

        // Update physics manifolds count
        physicsManifoldsCount--;
    }
    else TRACELOG("[PHYSAC] WARNING: DestroyPhysicsManifold: NULL physic manifold\n");
}

// Solves a created physics manifold between two physics bodies
static void SolvePhysicsManifold(PhysicsManifold manifold)
{
    switch (manifold->bodyA->shape.type)
    {
        case PHYSICS_CIRCLE:
        {
            switch (manifold->bodyB->shape.type)
            {
                case PHYSICS_CIRCLE: SolveCircleToCircle(manifold); break;
                case PHYSICS_POLYGON: SolveCircleToPolygon(manifold); break;
                default: break;
            }
        } break;
        case PHYSICS_POLYGON:
        {
            switch (manifold->bodyB->shape.type)
            {
                case PHYSICS_CIRCLE: SolvePolygonToCircle(manifold); break;
                case PHYSICS_POLYGON: SolvePolygonToPolygon(manifold); break;
                default: break;
            }
        } break;
        default: break;
    }

    // Update physics body grounded state if normal direction is down and grounded state is not set yet in previous manifolds
    if (!manifold->bodyB->isGrounded) manifold->bodyB->isGrounded = (manifold->normal.y < 0);
}

// Solves collision between two circle shape physics bodies
static void SolveCircleToCircle(PhysicsManifold manifold)
{
    PhysicsBody bodyA = manifold->bodyA;
    PhysicsBody bodyB = manifold->bodyB;

    if ((bodyA == NULL) || (bodyB == NULL)) return;

    // Calculate translational vector, which is normal
    Vector2 normal = MathVector2Subtract(bodyB->position, bodyA->position);

    float distSqr = MathVector2SqrLen(normal);
    float radius = bodyA->shape.radius + bodyB->shape.radius;

    // Check if circles are not in contact
    if (distSqr >= radius*radius)
    {
        manifold->contactsCount = 0;
        return;
    }

    float distance = sqrtf(distSqr);
    manifold->contactsCount = 1;

    if (distance == 0.0f)
    {
        manifold->penetration = bodyA->shape.radius;
        manifold->normal = CLITERAL(Vector2){ 1.0f, 0.0f };
        manifold->contacts[0] = bodyA->position;
    }
    else
    {
        manifold->penetration = radius - distance;
        manifold->normal = CLITERAL(Vector2){ normal.x/distance, normal.y/distance }; // Faster than using MathVector2Normalize() due to sqrt is already performed
        manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
    }

    // Update physics body grounded state if normal direction is down
    if (!bodyA->isGrounded) bodyA->isGrounded = (manifold->normal.y < 0);
}

// Solves collision between a circle to a polygon shape physics bodies
static void SolveCircleToPolygon(PhysicsManifold manifold)
{
    PhysicsBody bodyA = manifold->bodyA;
    PhysicsBody bodyB = manifold->bodyB;

    if ((bodyA == NULL) || (bodyB == NULL)) return;

    manifold->contactsCount = 0;

    // Transform circle center to polygon transform space
    Vector2 center = bodyA->position;
    center = MathMatVector2Product(MathMatTranspose(bodyB->shape.transform), MathVector2Subtract(center, bodyB->position));

    // Find edge with minimum penetration
    // It is the same concept as using support points in SolvePolygonToPolygon
    float separation = -PHYSAC_FLT_MAX;
    int faceNormal = 0;
    PhysicsVertexData vertexData = bodyB->shape.vertexData;

    for (unsigned int i = 0; i < vertexData.vertexCount; i++)
    {
        float currentSeparation = MathVector2DotProduct(vertexData.normals[i], MathVector2Subtract(center, vertexData.positions[i]));

        if (currentSeparation > bodyA->shape.radius) return;

        if (currentSeparation > separation)
        {
            separation = currentSeparation;
            faceNormal = i;
        }
    }

    // Grab face's vertices
    Vector2 v1 = vertexData.positions[faceNormal];
    int nextIndex = (((faceNormal + 1) < (int)vertexData.vertexCount) ? (faceNormal + 1) : 0);
    Vector2 v2 = vertexData.positions[nextIndex];

    // Check to see if center is within polygon
    if (separation < PHYSAC_EPSILON)
    {
        manifold->contactsCount = 1;
        Vector2 normal = MathMatVector2Product(bodyB->shape.transform, vertexData.normals[faceNormal]);
        manifold->normal = CLITERAL(Vector2){ -normal.x, -normal.y };
        manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
        manifold->penetration = bodyA->shape.radius;
        return;
    }

    // Determine which voronoi region of the edge center of circle lies within
    float dot1 = MathVector2DotProduct(MathVector2Subtract(center, v1), MathVector2Subtract(v2, v1));
    float dot2 = MathVector2DotProduct(MathVector2Subtract(center, v2), MathVector2Subtract(v1, v2));
    manifold->penetration = bodyA->shape.radius - separation;

    if (dot1 <= 0.0f) // Closest to v1
    {
        if (MathVector2SqrDistance(center, v1) > bodyA->shape.radius*bodyA->shape.radius) return;

        manifold->contactsCount = 1;
        Vector2 normal = MathVector2Subtract(v1, center);
        normal = MathMatVector2Product(bodyB->shape.transform, normal);
        MathVector2Normalize(&normal);
        manifold->normal = normal;
        v1 = MathMatVector2Product(bodyB->shape.transform, v1);
        v1 = MathVector2Add(v1, bodyB->position);
        manifold->contacts[0] = v1;
    }
    else if (dot2 <= 0.0f) // Closest to v2
    {
        if (MathVector2SqrDistance(center, v2) > bodyA->shape.radius*bodyA->shape.radius) return;

        manifold->contactsCount = 1;
        Vector2 normal = MathVector2Subtract(v2, center);
        v2 = MathMatVector2Product(bodyB->shape.transform, v2);
        v2 = MathVector2Add(v2, bodyB->position);
        manifold->contacts[0] = v2;
        normal = MathMatVector2Product(bodyB->shape.transform, normal);
        MathVector2Normalize(&normal);
        manifold->normal = normal;
    }
    else // Closest to face
    {
        Vector2 normal = vertexData.normals[faceNormal];

        if (MathVector2DotProduct(MathVector2Subtract(center, v1), normal) > bodyA->shape.radius) return;

        normal = MathMatVector2Product(bodyB->shape.transform, normal);
        manifold->normal = CLITERAL(Vector2){ -normal.x, -normal.y };
        manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
        manifold->contactsCount = 1;
    }
}

// Solves collision between a polygon to a circle shape physics bodies
static void SolvePolygonToCircle(PhysicsManifold manifold)
{
    PhysicsBody bodyA = manifold->bodyA;
    PhysicsBody bodyB = manifold->bodyB;

    if ((bodyA == NULL) || (bodyB == NULL)) return;

    manifold->bodyA = bodyB;
    manifold->bodyB = bodyA;
    SolveCircleToPolygon(manifold);

    manifold->normal.x *= -1.0f;
    manifold->normal.y *= -1.0f;
}

// Solves collision between two polygons shape physics bodies
static void SolvePolygonToPolygon(PhysicsManifold manifold)
{
    if ((manifold->bodyA == NULL) || (manifold->bodyB == NULL)) return;

    PhysicsShape bodyA = manifold->bodyA->shape;
    PhysicsShape bodyB = manifold->bodyB->shape;
    manifold->contactsCount = 0;

    // Check for separating axis with A shape's face planes
    int faceA = 0;
    float penetrationA = FindAxisLeastPenetration(&faceA, bodyA, bodyB);
    if (penetrationA >= 0.0f) return;

    // Check for separating axis with B shape's face planes
    int faceB = 0;
    float penetrationB = FindAxisLeastPenetration(&faceB, bodyB, bodyA);
    if (penetrationB >= 0.0f) return;

    int referenceIndex = 0;
    bool flip = false;  // Always point from A shape to B shape

    PhysicsShape refPoly; // Reference
    PhysicsShape incPoly; // Incident

    // Determine which shape contains reference face
    // Checking bias range for penetration
    if (penetrationA >= (penetrationB*0.95f + penetrationA*0.01f))
    {
        refPoly = bodyA;
        incPoly = bodyB;
        referenceIndex = faceA;
    }
    else
    {
        refPoly = bodyB;
        incPoly = bodyA;
        referenceIndex = faceB;
        flip = true;
    }

    // World space incident face
    Vector2 incidentFace[2];
    FindIncidentFace(&incidentFace[0], &incidentFace[1], refPoly, incPoly, referenceIndex);

    // Setup reference face vertices
    PhysicsVertexData refData = refPoly.vertexData;
    Vector2 v1 = refData.positions[referenceIndex];
    referenceIndex = (((referenceIndex + 1) < (int)refData.vertexCount) ? (referenceIndex + 1) : 0);
    Vector2 v2 = refData.positions[referenceIndex];

    // Transform vertices to world space
    v1 = MathMatVector2Product(refPoly.transform, v1);
    v1 = MathVector2Add(v1, refPoly.body->position);
    v2 = MathMatVector2Product(refPoly.transform, v2);
    v2 = MathVector2Add(v2, refPoly.body->position);

    // Calculate reference face side normal in world space
    Vector2 sidePlaneNormal = MathVector2Subtract(v2, v1);
    MathVector2Normalize(&sidePlaneNormal);

    // Orthogonalize
    Vector2 refFaceNormal = { sidePlaneNormal.y, -sidePlaneNormal.x };
    float refC = MathVector2DotProduct(refFaceNormal, v1);
    float negSide = MathVector2DotProduct(sidePlaneNormal, v1)*-1;
    float posSide = MathVector2DotProduct(sidePlaneNormal, v2);

    // MathVector2Clip incident face to reference face side planes (due to floating point error, possible to not have required points
    if (MathVector2Clip(CLITERAL(Vector2){ -sidePlaneNormal.x, -sidePlaneNormal.y }, &incidentFace[0], &incidentFace[1], negSide) < 2) return;
    if (MathVector2Clip(sidePlaneNormal, &incidentFace[0], &incidentFace[1], posSide) < 2) return;

    // Flip normal if required
    manifold->normal = (flip ? CLITERAL(Vector2){ -refFaceNormal.x, -refFaceNormal.y } : refFaceNormal);

    // Keep points behind reference face
    int currentPoint = 0; // MathVector2Clipped points behind reference face
    float separation = MathVector2DotProduct(refFaceNormal, incidentFace[0]) - refC;
    if (separation <= 0.0f)
    {
        manifold->contacts[currentPoint] = incidentFace[0];
        manifold->penetration = -separation;
        currentPoint++;
    }
    else manifold->penetration = 0.0f;

    separation = MathVector2DotProduct(refFaceNormal, incidentFace[1]) - refC;

    if (separation <= 0.0f)
    {
        manifold->contacts[currentPoint] = incidentFace[1];
        manifold->penetration += -separation;
        currentPoint++;

        // Calculate total penetration average
        manifold->penetration /= currentPoint;
    }

    manifold->contactsCount = currentPoint;
}

// Integrates physics forces into velocity
static void IntegratePhysicsForces(PhysicsBody body)
{
    if ((body == NULL) || (body->inverseMass == 0.0f) || !body->enabled) return;

    body->velocity.x += (float)((body->force.x*body->inverseMass)*(deltaTime/2.0));
    body->velocity.y += (float)((body->force.y*body->inverseMass)*(deltaTime/2.0));

    if (body->useGravity)
    {
        body->velocity.x += (float)(gravityForce.x*(deltaTime/1000/2.0));
        body->velocity.y += (float)(gravityForce.y*(deltaTime/1000/2.0));
    }

    if (!body->freezeOrient) body->angularVelocity += (float)(body->torque*body->inverseInertia*(deltaTime/2.0));
}

// Initializes physics manifolds to solve collisions
static void InitializePhysicsManifolds(PhysicsManifold manifold)
{
    PhysicsBody bodyA = manifold->bodyA;
    PhysicsBody bodyB = manifold->bodyB;

    if ((bodyA == NULL) || (bodyB == NULL)) return;

    // Calculate average restitution, static and dynamic friction
    manifold->restitution = sqrtf(bodyA->restitution*bodyB->restitution);
    manifold->staticFriction = sqrtf(bodyA->staticFriction*bodyB->staticFriction);
    manifold->dynamicFriction = sqrtf(bodyA->dynamicFriction*bodyB->dynamicFriction);

    for (unsigned int i = 0; i < manifold->contactsCount; i++)
    {
        // Caculate radius from center of mass to contact
        Vector2 radiusA = MathVector2Subtract(manifold->contacts[i], bodyA->position);
        Vector2 radiusB = MathVector2Subtract(manifold->contacts[i], bodyB->position);

        Vector2 crossA = MathVector2Product(radiusA, bodyA->angularVelocity);
        Vector2 crossB = MathVector2Product(radiusB, bodyB->angularVelocity);

        Vector2 radiusV = { 0.0f, 0.0f };
        radiusV.x = bodyB->velocity.x + crossB.x - bodyA->velocity.x - crossA.x;
        radiusV.y = bodyB->velocity.y + crossB.y - bodyA->velocity.y - crossA.y;

        // Determine if we should perform a resting collision or not;
        // The idea is if the only thing moving this object is gravity, then the collision should be performed without any restitution
        if (MathVector2SqrLen(radiusV) < (MathVector2SqrLen(CLITERAL(Vector2){ (float)(gravityForce.x*deltaTime/1000), (float)(gravityForce.y*deltaTime/1000) }) + PHYSAC_EPSILON)) manifold->restitution = 0;
    }
}

// Integrates physics collisions impulses to solve collisions
static void IntegratePhysicsImpulses(PhysicsManifold manifold)
{
    PhysicsBody bodyA = manifold->bodyA;
    PhysicsBody bodyB = manifold->bodyB;

    if ((bodyA == NULL) || (bodyB == NULL)) return;

    // Early out and positional correct if both objects have infinite mass
    if (fabs(bodyA->inverseMass + bodyB->inverseMass) <= PHYSAC_EPSILON)
    {
        bodyA->velocity = PHYSAC_VECTOR_ZERO;
        bodyB->velocity = PHYSAC_VECTOR_ZERO;
        return;
    }

    for (unsigned int i = 0; i < manifold->contactsCount; i++)
    {
        // Calculate radius from center of mass to contact
        Vector2 radiusA = MathVector2Subtract(manifold->contacts[i], bodyA->position);
        Vector2 radiusB = MathVector2Subtract(manifold->contacts[i], bodyB->position);

        // Calculate relative velocity
        Vector2 radiusV = { 0.0f, 0.0f };
        radiusV.x = bodyB->velocity.x + MathVector2Product(radiusB, bodyB->angularVelocity).x - bodyA->velocity.x - MathVector2Product(radiusA, bodyA->angularVelocity).x;
        radiusV.y = bodyB->velocity.y + MathVector2Product(radiusB, bodyB->angularVelocity).y - bodyA->velocity.y - MathVector2Product(radiusA, bodyA->angularVelocity).y;

        // Relative velocity along the normal
        float contactVelocity = MathVector2DotProduct(radiusV, manifold->normal);

        // Do not resolve if velocities are separating
        if (contactVelocity > 0.0f) return;

        float raCrossN = MathVector2CrossProduct(radiusA, manifold->normal);
        float rbCrossN = MathVector2CrossProduct(radiusB, manifold->normal);

        float inverseMassSum = bodyA->inverseMass + bodyB->inverseMass + (raCrossN*raCrossN)*bodyA->inverseInertia + (rbCrossN*rbCrossN)*bodyB->inverseInertia;

        // Calculate impulse scalar value
        float impulse = -(1.0f + manifold->restitution)*contactVelocity;
        impulse /= inverseMassSum;
        impulse /= (float)manifold->contactsCount;

        // Apply impulse to each physics body
        Vector2 impulseV = { manifold->normal.x*impulse, manifold->normal.y*impulse };

        if (bodyA->enabled)
        {
            bodyA->velocity.x += bodyA->inverseMass*(-impulseV.x);
            bodyA->velocity.y += bodyA->inverseMass*(-impulseV.y);
            if (!bodyA->freezeOrient) bodyA->angularVelocity += bodyA->inverseInertia*MathVector2CrossProduct(radiusA, CLITERAL(Vector2){ -impulseV.x, -impulseV.y });
        }

        if (bodyB->enabled)
        {
            bodyB->velocity.x += bodyB->inverseMass*(impulseV.x);
            bodyB->velocity.y += bodyB->inverseMass*(impulseV.y);
            if (!bodyB->freezeOrient) bodyB->angularVelocity += bodyB->inverseInertia*MathVector2CrossProduct(radiusB, impulseV);
        }

        // Apply friction impulse to each physics body
        radiusV.x = bodyB->velocity.x + MathVector2Product(radiusB, bodyB->angularVelocity).x - bodyA->velocity.x - MathVector2Product(radiusA, bodyA->angularVelocity).x;
        radiusV.y = bodyB->velocity.y + MathVector2Product(radiusB, bodyB->angularVelocity).y - bodyA->velocity.y - MathVector2Product(radiusA, bodyA->angularVelocity).y;

        Vector2 tangent = { radiusV.x - (manifold->normal.x*MathVector2DotProduct(radiusV, manifold->normal)), radiusV.y - (manifold->normal.y*MathVector2DotProduct(radiusV, manifold->normal)) };
        MathVector2Normalize(&tangent);

        // Calculate impulse tangent magnitude
        float impulseTangent = -MathVector2DotProduct(radiusV, tangent);
        impulseTangent /= inverseMassSum;
        impulseTangent /= (float)manifold->contactsCount;

        float absImpulseTangent = (float)fabs(impulseTangent);

        // Don't apply tiny friction impulses
        if (absImpulseTangent <= PHYSAC_EPSILON) return;

        // Apply coulumb's law
        Vector2 tangentImpulse = { 0.0f, 0.0f };
        if (absImpulseTangent < impulse*manifold->staticFriction) tangentImpulse = CLITERAL(Vector2){ tangent.x*impulseTangent, tangent.y*impulseTangent };
        else tangentImpulse = CLITERAL(Vector2){ tangent.x*-impulse*manifold->dynamicFriction, tangent.y*-impulse*manifold->dynamicFriction };

        // Apply friction impulse
        if (bodyA->enabled)
        {
            bodyA->velocity.x += bodyA->inverseMass*(-tangentImpulse.x);
            bodyA->velocity.y += bodyA->inverseMass*(-tangentImpulse.y);

            if (!bodyA->freezeOrient) bodyA->angularVelocity += bodyA->inverseInertia*MathVector2CrossProduct(radiusA, CLITERAL(Vector2){ -tangentImpulse.x, -tangentImpulse.y });
        }

        if (bodyB->enabled)
        {
            bodyB->velocity.x += bodyB->inverseMass*(tangentImpulse.x);
            bodyB->velocity.y += bodyB->inverseMass*(tangentImpulse.y);

            if (!bodyB->freezeOrient) bodyB->angularVelocity += bodyB->inverseInertia*MathVector2CrossProduct(radiusB, tangentImpulse);
        }
    }
}

// Integrates physics velocity into position and forces
static void IntegratePhysicsVelocity(PhysicsBody body)
{
    if ((body == NULL) ||!body->enabled) return;

    body->position.x += (float)(body->velocity.x*deltaTime);
    body->position.y += (float)(body->velocity.y*deltaTime);

    if (!body->freezeOrient) body->orient += (float)(body->angularVelocity*deltaTime);
    body->shape.transform = MathMatFromRadians(body->orient);

    IntegratePhysicsForces(body);
}

// Corrects physics bodies positions based on manifolds collision information
static void CorrectPhysicsPositions(PhysicsManifold manifold)
{
    PhysicsBody bodyA = manifold->bodyA;
    PhysicsBody bodyB = manifold->bodyB;

    if ((bodyA == NULL) || (bodyB == NULL)) return;

    Vector2 correction = { 0.0f, 0.0f };
    correction.x = (PHYSAC_MAX(manifold->penetration - PHYSAC_PENETRATION_ALLOWANCE, 0.0f)/(bodyA->inverseMass + bodyB->inverseMass))*manifold->normal.x*PHYSAC_PENETRATION_CORRECTION;
    correction.y = (PHYSAC_MAX(manifold->penetration - PHYSAC_PENETRATION_ALLOWANCE, 0.0f)/(bodyA->inverseMass + bodyB->inverseMass))*manifold->normal.y*PHYSAC_PENETRATION_CORRECTION;

    if (bodyA->enabled)
    {
        bodyA->position.x -= correction.x*bodyA->inverseMass;
        bodyA->position.y -= correction.y*bodyA->inverseMass;
    }

    if (bodyB->enabled)
    {
        bodyB->position.x += correction.x*bodyB->inverseMass;
        bodyB->position.y += correction.y*bodyB->inverseMass;
    }
}

// Returns the extreme point along a direction within a polygon
static Vector2 GetSupport(PhysicsShape shape, Vector2 dir)
{
    float bestProjection = -PHYSAC_FLT_MAX;
    Vector2 bestVertex = { 0.0f, 0.0f };
    PhysicsVertexData data = shape.vertexData;

    for (unsigned int i = 0; i < data.vertexCount; i++)
    {
        Vector2 vertex = data.positions[i];
        float projection = MathVector2DotProduct(vertex, dir);

        if (projection > bestProjection)
        {
            bestVertex = vertex;
            bestProjection = projection;
        }
    }

    return bestVertex;
}

// Finds polygon shapes axis least penetration
static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB)
{
    float bestDistance = -PHYSAC_FLT_MAX;
    int bestIndex = 0;

    PhysicsVertexData dataA = shapeA.vertexData;
    //PhysicsVertexData dataB = shapeB.vertexData;

    for (unsigned int i = 0; i < dataA.vertexCount; i++)
    {
        // Retrieve a face normal from A shape
        Vector2 normal = dataA.normals[i];
        Vector2 transNormal = MathMatVector2Product(shapeA.transform, normal);

        // Transform face normal into B shape's model space
        Matrix2x2 buT = MathMatTranspose(shapeB.transform);
        normal = MathMatVector2Product(buT, transNormal);

        // Retrieve support point from B shape along -n
        Vector2 support = GetSupport(shapeB, CLITERAL(Vector2){ -normal.x, -normal.y });

        // Retrieve vertex on face from A shape, transform into B shape's model space
        Vector2 vertex = dataA.positions[i];
        vertex = MathMatVector2Product(shapeA.transform, vertex);
        vertex = MathVector2Add(vertex, shapeA.body->position);
        vertex = MathVector2Subtract(vertex, shapeB.body->position);
        vertex = MathMatVector2Product(buT, vertex);

        // Compute penetration distance in B shape's model space
        float distance = MathVector2DotProduct(normal, MathVector2Subtract(support, vertex));

        // Store greatest distance
        if (distance > bestDistance)
        {
            bestDistance = distance;
            bestIndex = i;
        }
    }

    *faceIndex = bestIndex;
    return bestDistance;
}

// Finds two polygon shapes incident face
static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index)
{
    PhysicsVertexData refData = ref.vertexData;
    PhysicsVertexData incData = inc.vertexData;

    Vector2 referenceNormal = refData.normals[index];

    // Calculate normal in incident's frame of reference
    referenceNormal = MathMatVector2Product(ref.transform, referenceNormal); // To world space
    referenceNormal = MathMatVector2Product(MathMatTranspose(inc.transform), referenceNormal); // To incident's model space

    // Find most anti-normal face on polygon
    int incidentFace = 0;
    float minDot = PHYSAC_FLT_MAX;

    for (unsigned int i = 0; i < incData.vertexCount; i++)
    {
        float dot = MathVector2DotProduct(referenceNormal, incData.normals[i]);

        if (dot < minDot)
        {
            minDot = dot;
            incidentFace = i;
        }
    }

    // Assign face vertices for incident face
    *v0 = MathMatVector2Product(inc.transform, incData.positions[incidentFace]);
    *v0 = MathVector2Add(*v0, inc.body->position);
    incidentFace = (((incidentFace + 1) < (int)incData.vertexCount) ? (incidentFace + 1) : 0);
    *v1 = MathMatVector2Product(inc.transform, incData.positions[incidentFace]);
    *v1 = MathVector2Add(*v1, inc.body->position);
}

// Returns clipping value based on a normal and two faces
static int MathVector2Clip(Vector2 normal, Vector2 *faceA, Vector2 *faceB, float clip)
{
    int sp = 0;
    Vector2 out[2] = { *faceA, *faceB };

    // Retrieve distances from each endpoint to the line
    float distanceA = MathVector2DotProduct(normal, *faceA) - clip;
    float distanceB = MathVector2DotProduct(normal, *faceB) - clip;

    // If negative (behind plane)
    if (distanceA <= 0.0f) out[sp++] = *faceA;
    if (distanceB <= 0.0f) out[sp++] = *faceB;

    // If the points are on different sides of the plane
    if ((distanceA*distanceB) < 0.0f)
    {
        // Push intersection point
        float alpha = distanceA/(distanceA - distanceB);
        out[sp] = *faceA;
        Vector2 delta = MathVector2Subtract(*faceB, *faceA);
        delta.x *= alpha;
        delta.y *= alpha;
        out[sp] = MathVector2Add(out[sp], delta);
        sp++;
    }

    // Assign the new converted values
    *faceA = out[0];
    *faceB = out[1];

    return sp;
}

// Returns the barycenter of a triangle given by 3 points
static Vector2 MathTriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3)
{
    Vector2 result = { 0.0f, 0.0f };

    result.x = (v1.x + v2.x + v3.x)/3;
    result.y = (v1.y + v2.y + v3.y)/3;

    return result;
}

// Returns the cross product of a vector and a value
static inline Vector2 MathVector2Product(Vector2 vector, float value)
{
    Vector2 result = { -value*vector.y, value*vector.x };
    return result;
}

// Returns the cross product of two vectors
static inline float MathVector2CrossProduct(Vector2 v1, Vector2 v2)
{
    return (v1.x*v2.y - v1.y*v2.x);
}

// Returns the len square root of a vector
static inline float MathVector2SqrLen(Vector2 vector)
{
    return (vector.x*vector.x + vector.y*vector.y);
}

// Returns the dot product of two vectors
static inline float MathVector2DotProduct(Vector2 v1, Vector2 v2)
{
    return (v1.x*v2.x + v1.y*v2.y);
}

// Returns the square root of distance between two vectors
static inline float MathVector2SqrDistance(Vector2 v1, Vector2 v2)
{
    Vector2 dir = MathVector2Subtract(v1, v2);
    return MathVector2DotProduct(dir, dir);
}

// Returns the normalized values of a vector
static void MathVector2Normalize(Vector2 *vector)
{
    float length, ilength;

    Vector2 aux = *vector;
    length = sqrtf(aux.x*aux.x + aux.y*aux.y);

    if (length == 0) length = 1.0f;

    ilength = 1.0f/length;

    vector->x *= ilength;
    vector->y *= ilength;
}

// Returns the sum of two given vectors
static inline Vector2 MathVector2Add(Vector2 v1, Vector2 v2)
{
    Vector2 result = { v1.x + v2.x, v1.y + v2.y };
    return result;
}

// Returns the subtract of two given vectors
static inline Vector2 MathVector2Subtract(Vector2 v1, Vector2 v2)
{
    Vector2 result = { v1.x - v2.x, v1.y - v2.y };
    return result;
}

// Creates a matrix 2x2 from a given radians value
static Matrix2x2 MathMatFromRadians(float radians)
{
    float cos = cosf(radians);
    float sin = sinf(radians);

    Matrix2x2 result = { cos, -sin, sin, cos };
    return result;
}

// Returns the transpose of a given matrix 2x2
static inline Matrix2x2 MathMatTranspose(Matrix2x2 matrix)
{
    Matrix2x2 result = { matrix.m00, matrix.m10, matrix.m01, matrix.m11 };
    return result;
}

// Multiplies a vector by a matrix 2x2
static inline Vector2 MathMatVector2Product(Matrix2x2 matrix, Vector2 vector)
{
    Vector2 result = { matrix.m00*vector.x + matrix.m01*vector.y, matrix.m10*vector.x + matrix.m11*vector.y };
    return result;
}

#endif  // PHYSAC_IMPLEMENTATION