aboutsummaryrefslogtreecommitdiffstats
path: root/raylib/src/extras/physac.h
diff options
context:
space:
mode:
Diffstat (limited to 'raylib/src/extras/physac.h')
-rw-r--r--raylib/src/extras/physac.h1987
1 files changed, 1987 insertions, 0 deletions
diff --git a/raylib/src/extras/physac.h b/raylib/src/extras/physac.h
new file mode 100644
index 0000000..3ab427a
--- /dev/null
+++ b/raylib/src/extras/physac.h
@@ -0,0 +1,1987 @@
+/**********************************************************************************************
+*
+* Physac v1.1 - 2D Physics library for videogames
+*
+* DESCRIPTION:
+*
+* Physac is a small 2D physics engine written in pure C. The engine uses a fixed time-step thread loop
+* to simulate physics. A physics step contains the following phases: get collision information,
+* apply dynamics, collision solving and position correction. It uses a very simple struct for physic
+* bodies with a position vector to be used in any 3D rendering API.
+*
+* CONFIGURATION:
+*
+* #define PHYSAC_IMPLEMENTATION
+* Generates the implementation of the library into the included file.
+* If not defined, the library is in header only mode and can be included in other headers
+* or source files without problems. But only ONE file should hold the implementation.
+*
+* #define PHYSAC_DEBUG
+* Show debug traces log messages about physic bodies creation/destruction, physic system errors,
+* some calculations results and NULL reference exceptions.
+*
+* #define PHYSAC_AVOID_TIMMING_SYSTEM
+* Disables internal timming system, used by UpdatePhysics() to launch timmed physic steps,
+* it allows just running UpdatePhysics() automatically on a separate thread at a desired time step.
+* In case physics steps update needs to be controlled by user with a custom timming mechanism,
+* just define this flag and the internal timming mechanism will be avoided, in that case,
+* timming libraries are neither required by the module.
+*
+* #define PHYSAC_MALLOC()
+* #define PHYSAC_CALLOC()
+* #define PHYSAC_FREE()
+* You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
+* Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
+*
+* COMPILATION:
+*
+* Use the following code to compile with GCC:
+* gcc -o $(NAME_PART).exe $(FILE_NAME) -s -static -lraylib -lopengl32 -lgdi32 -lwinmm -std=c99
+*
+* VERSIONS HISTORY:
+* 1.1 (20-Jan-2021) @raysan5: Library general revision
+* Removed threading system (up to the user)
+* Support MSVC C++ compilation using CLITERAL()
+* Review DEBUG mechanism for TRACELOG() and all TRACELOG() messages
+* Review internal variables/functions naming for consistency
+* Allow option to avoid internal timming system, to allow app manage the steps
+* 1.0 (12-Jun-2017) First release of the library
+*
+*
+* LICENSE: zlib/libpng
+*
+* Copyright (c) 2016-2022 Victor Fisac (@victorfisac) and Ramon Santamaria (@raysan5)
+*
+* This software is provided "as-is", without any express or implied warranty. In no event
+* will the authors be held liable for any damages arising from the use of this software.
+*
+* Permission is granted to anyone to use this software for any purpose, including commercial
+* applications, and to alter it and redistribute it freely, subject to the following restrictions:
+*
+* 1. The origin of this software must not be misrepresented; you must not claim that you
+* wrote the original software. If you use this software in a product, an acknowledgment
+* in the product documentation would be appreciated but is not required.
+*
+* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
+* as being the original software.
+*
+* 3. This notice may not be removed or altered from any source distribution.
+*
+**********************************************************************************************/
+
+#if !defined(PHYSAC_H)
+#define PHYSAC_H
+
+// Function specifiers in case library is build/used as a shared library (Windows)
+// NOTE: Microsoft specifiers to tell compiler that symbols are imported/exported from a .dll
+#if defined(_WIN32)
+ #if defined(BUILD_LIBTYPE_SHARED)
+ #define PHYSACDEF __declspec(dllexport) // We are building the library as a Win32 shared library (.dll)
+ #elif defined(USE_LIBTYPE_SHARED)
+ #define PHYSACDEF __declspec(dllimport) // We are using the library as a Win32 shared library (.dll)
+ #endif
+#endif
+
+#ifndef PHYSACDEF
+ #define PHYSACDEF // We are building or using physac as a static library
+#endif
+
+// Allow custom memory allocators
+#ifndef PHYSAC_MALLOC
+ #define PHYSAC_MALLOC(size) malloc(size)
+#endif
+#ifndef PHYSAC_CALLOC
+ #define PHYSAC_CALLOC(size, n) calloc(size, n)
+#endif
+#ifndef PHYSAC_FREE
+ #define PHYSAC_FREE(ptr) free(ptr)
+#endif
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+#define PHYSAC_MAX_BODIES 64 // Maximum number of physic bodies supported
+#define PHYSAC_MAX_MANIFOLDS 4096 // Maximum number of physic bodies interactions (64x64)
+#define PHYSAC_MAX_VERTICES 24 // Maximum number of vertex for polygons shapes
+#define PHYSAC_DEFAULT_CIRCLE_VERTICES 24 // Default number of vertices for circle shapes
+
+#define PHYSAC_COLLISION_ITERATIONS 100
+#define PHYSAC_PENETRATION_ALLOWANCE 0.05f
+#define PHYSAC_PENETRATION_CORRECTION 0.4f
+
+#define PHYSAC_PI 3.14159265358979323846f
+#define PHYSAC_DEG2RAD (PHYSAC_PI/180.0f)
+
+//----------------------------------------------------------------------------------
+// Data Types Structure Definition
+//----------------------------------------------------------------------------------
+#if defined(__STDC__) && __STDC_VERSION__ >= 199901L
+ #include <stdbool.h>
+#endif
+
+typedef enum PhysicsShapeType { PHYSICS_CIRCLE = 0, PHYSICS_POLYGON } PhysicsShapeType;
+
+// Previously defined to be used in PhysicsShape struct as circular dependencies
+typedef struct PhysicsBodyData *PhysicsBody;
+
+#if !defined(RL_VECTOR2_TYPE)
+// Vector2 type
+typedef struct Vector2 {
+ float x;
+ float y;
+} Vector2;
+#endif
+
+// Matrix2x2 type (used for polygon shape rotation matrix)
+typedef struct Matrix2x2 {
+ float m00;
+ float m01;
+ float m10;
+ float m11;
+} Matrix2x2;
+
+typedef struct PhysicsVertexData {
+ unsigned int vertexCount; // Vertex count (positions and normals)
+ Vector2 positions[PHYSAC_MAX_VERTICES]; // Vertex positions vectors
+ Vector2 normals[PHYSAC_MAX_VERTICES]; // Vertex normals vectors
+} PhysicsVertexData;
+
+typedef struct PhysicsShape {
+ PhysicsShapeType type; // Shape type (circle or polygon)
+ PhysicsBody body; // Shape physics body data pointer
+ PhysicsVertexData vertexData; // Shape vertices data (used for polygon shapes)
+ float radius; // Shape radius (used for circle shapes)
+ Matrix2x2 transform; // Vertices transform matrix 2x2
+} PhysicsShape;
+
+typedef struct PhysicsBodyData {
+ unsigned int id; // Unique identifier
+ bool enabled; // Enabled dynamics state (collisions are calculated anyway)
+ Vector2 position; // Physics body shape pivot
+ Vector2 velocity; // Current linear velocity applied to position
+ Vector2 force; // Current linear force (reset to 0 every step)
+ float angularVelocity; // Current angular velocity applied to orient
+ float torque; // Current angular force (reset to 0 every step)
+ float orient; // Rotation in radians
+ float inertia; // Moment of inertia
+ float inverseInertia; // Inverse value of inertia
+ float mass; // Physics body mass
+ float inverseMass; // Inverse value of mass
+ float staticFriction; // Friction when the body has not movement (0 to 1)
+ float dynamicFriction; // Friction when the body has movement (0 to 1)
+ float restitution; // Restitution coefficient of the body (0 to 1)
+ bool useGravity; // Apply gravity force to dynamics
+ bool isGrounded; // Physics grounded on other body state
+ bool freezeOrient; // Physics rotation constraint
+ PhysicsShape shape; // Physics body shape information (type, radius, vertices, transform)
+} PhysicsBodyData;
+
+typedef struct PhysicsManifoldData {
+ unsigned int id; // Unique identifier
+ PhysicsBody bodyA; // Manifold first physics body reference
+ PhysicsBody bodyB; // Manifold second physics body reference
+ float penetration; // Depth of penetration from collision
+ Vector2 normal; // Normal direction vector from 'a' to 'b'
+ Vector2 contacts[2]; // Points of contact during collision
+ unsigned int contactsCount; // Current collision number of contacts
+ float restitution; // Mixed restitution during collision
+ float dynamicFriction; // Mixed dynamic friction during collision
+ float staticFriction; // Mixed static friction during collision
+} PhysicsManifoldData, *PhysicsManifold;
+
+//----------------------------------------------------------------------------------
+// Module Functions Declaration
+//----------------------------------------------------------------------------------
+
+#if defined(__cplusplus)
+extern "C" { // Prevents name mangling of functions
+#endif
+// Physics system management
+PHYSACDEF void InitPhysics(void); // Initializes physics system
+PHYSACDEF void UpdatePhysics(void); // Update physics system
+PHYSACDEF void ResetPhysics(void); // Reset physics system (global variables)
+PHYSACDEF void ClosePhysics(void); // Close physics system and unload used memory
+PHYSACDEF void SetPhysicsTimeStep(double delta); // Sets physics fixed time step in milliseconds. 1.666666 by default
+PHYSACDEF void SetPhysicsGravity(float x, float y); // Sets physics global gravity force
+
+// Physic body creation/destroy
+PHYSACDEF PhysicsBody CreatePhysicsBodyCircle(Vector2 pos, float radius, float density); // Creates a new circle physics body with generic parameters
+PHYSACDEF PhysicsBody CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density); // Creates a new rectangle physics body with generic parameters
+PHYSACDEF PhysicsBody CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density); // Creates a new polygon physics body with generic parameters
+PHYSACDEF void DestroyPhysicsBody(PhysicsBody body); // Destroy a physics body
+
+// Physic body forces
+PHYSACDEF void PhysicsAddForce(PhysicsBody body, Vector2 force); // Adds a force to a physics body
+PHYSACDEF void PhysicsAddTorque(PhysicsBody body, float amount); // Adds an angular force to a physics body
+PHYSACDEF void PhysicsShatter(PhysicsBody body, Vector2 position, float force); // Shatters a polygon shape physics body to little physics bodies with explosion force
+PHYSACDEF void SetPhysicsBodyRotation(PhysicsBody body, float radians); // Sets physics body shape transform based on radians parameter
+
+// Query physics info
+PHYSACDEF PhysicsBody GetPhysicsBody(int index); // Returns a physics body of the bodies pool at a specific index
+PHYSACDEF int GetPhysicsBodiesCount(void); // Returns the current amount of created physics bodies
+PHYSACDEF int GetPhysicsShapeType(int index); // Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
+PHYSACDEF int GetPhysicsShapeVerticesCount(int index); // Returns the amount of vertices of a physics body shape
+PHYSACDEF Vector2 GetPhysicsShapeVertex(PhysicsBody body, int vertex); // Returns transformed position of a body shape (body position + vertex transformed position)
+#if defined(__cplusplus)
+}
+#endif
+
+#endif // PHYSAC_H
+
+/***********************************************************************************
+*
+* PHYSAC IMPLEMENTATION
+*
+************************************************************************************/
+
+#if defined(PHYSAC_IMPLEMENTATION)
+
+// Support TRACELOG macros
+#if defined(PHYSAC_DEBUG)
+ #include <stdio.h> // Required for: printf()
+ #define TRACELOG(...) printf(__VA_ARGS__)
+#else
+ #define TRACELOG(...) (void)0;
+#endif
+
+#include <stdlib.h> // Required for: malloc(), calloc(), free()
+#include <math.h> // Required for: cosf(), sinf(), fabs(), sqrtf()
+
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+ // Time management functionality
+ #include <time.h> // Required for: time(), clock_gettime()
+ #if defined(_WIN32)
+ #if defined(__cplusplus)
+ extern "C" { // Prevents name mangling of functions
+ #endif
+ // Functions required to query time on Windows
+ int __stdcall QueryPerformanceCounter(unsigned long long int *lpPerformanceCount);
+ int __stdcall QueryPerformanceFrequency(unsigned long long int *lpFrequency);
+ #if defined(__cplusplus)
+ }
+ #endif
+ #endif
+ #if defined(__linux__) || defined(__FreeBSD__)
+ #if _POSIX_C_SOURCE < 199309L
+ #undef _POSIX_C_SOURCE
+ #define _POSIX_C_SOURCE 199309L // Required for CLOCK_MONOTONIC if compiled with c99 without gnu ext.
+ #endif
+ #include <sys/time.h> // Required for: timespec
+ #endif
+ #if defined(__APPLE__) // macOS also defines __MACH__
+ #include <mach/mach_time.h> // Required for: mach_absolute_time()
+ #endif
+#endif
+
+// NOTE: MSVC C++ compiler does not support compound literals (C99 feature)
+// Plain structures in C++ (without constructors) can be initialized from { } initializers.
+#if defined(__cplusplus)
+ #define CLITERAL(type) type
+#else
+ #define CLITERAL(type) (type)
+#endif
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+#define PHYSAC_MIN(a,b) (((a)<(b))?(a):(b))
+#define PHYSAC_MAX(a,b) (((a)>(b))?(a):(b))
+#define PHYSAC_FLT_MAX 3.402823466e+38f
+#define PHYSAC_EPSILON 0.000001f
+#define PHYSAC_K 1.0f/3.0f
+#define PHYSAC_VECTOR_ZERO CLITERAL(Vector2){ 0.0f, 0.0f }
+
+//----------------------------------------------------------------------------------
+// Global Variables Definition
+//----------------------------------------------------------------------------------
+static double deltaTime = 1.0/60.0/10.0 * 1000; // Delta time in milliseconds used for physics steps
+
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+// Time measure variables
+static double baseClockTicks = 0.0; // Offset clock ticks for MONOTONIC clock
+static unsigned long long int frequency = 0; // Hi-res clock frequency
+static double startTime = 0.0; // Start time in milliseconds
+static double currentTime = 0.0; // Current time in milliseconds
+#endif
+
+// Physics system configuration
+static PhysicsBody bodies[PHYSAC_MAX_BODIES]; // Physics bodies pointers array
+static unsigned int physicsBodiesCount = 0; // Physics world current bodies counter
+static PhysicsManifold contacts[PHYSAC_MAX_MANIFOLDS]; // Physics bodies pointers array
+static unsigned int physicsManifoldsCount = 0; // Physics world current manifolds counter
+
+static Vector2 gravityForce = { 0.0f, 9.81f }; // Physics world gravity force
+
+// Utilities variables
+static unsigned int usedMemory = 0; // Total allocated dynamic memory
+
+//----------------------------------------------------------------------------------
+// Module Internal Functions Declaration
+//----------------------------------------------------------------------------------
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+// Timming measure functions
+static void InitTimerHiRes(void); // Initializes hi-resolution MONOTONIC timer
+static unsigned long long int GetClockTicks(void); // Get hi-res MONOTONIC time measure in mseconds
+static double GetCurrentTime(void); // Get current time measure in milliseconds
+#endif
+
+static void UpdatePhysicsStep(void); // Update physics step (dynamics, collisions and position corrections)
+
+static int FindAvailableBodyIndex(); // Finds a valid index for a new physics body initialization
+static int FindAvailableManifoldIndex(); // Finds a valid index for a new manifold initialization
+static PhysicsVertexData CreateDefaultPolygon(float radius, int sides); // Creates a random polygon shape with max vertex distance from polygon pivot
+static PhysicsVertexData CreateRectanglePolygon(Vector2 pos, Vector2 size); // Creates a rectangle polygon shape based on a min and max positions
+
+static void InitializePhysicsManifolds(PhysicsManifold manifold); // Initializes physics manifolds to solve collisions
+static PhysicsManifold CreatePhysicsManifold(PhysicsBody a, PhysicsBody b); // Creates a new physics manifold to solve collision
+static void DestroyPhysicsManifold(PhysicsManifold manifold); // Unitializes and destroys a physics manifold
+
+static void SolvePhysicsManifold(PhysicsManifold manifold); // Solves a created physics manifold between two physics bodies
+static void SolveCircleToCircle(PhysicsManifold manifold); // Solves collision between two circle shape physics bodies
+static void SolveCircleToPolygon(PhysicsManifold manifold); // Solves collision between a circle to a polygon shape physics bodies
+static void SolvePolygonToCircle(PhysicsManifold manifold); // Solves collision between a polygon to a circle shape physics bodies
+static void SolvePolygonToPolygon(PhysicsManifold manifold); // Solves collision between two polygons shape physics bodies
+static void IntegratePhysicsForces(PhysicsBody body); // Integrates physics forces into velocity
+static void IntegratePhysicsVelocity(PhysicsBody body); // Integrates physics velocity into position and forces
+static void IntegratePhysicsImpulses(PhysicsManifold manifold); // Integrates physics collisions impulses to solve collisions
+static void CorrectPhysicsPositions(PhysicsManifold manifold); // Corrects physics bodies positions based on manifolds collision information
+static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index); // Finds two polygon shapes incident face
+static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB); // Finds polygon shapes axis least penetration
+
+// Math required functions
+static Vector2 MathVector2Product(Vector2 vector, float value); // Returns the product of a vector and a value
+static float MathVector2CrossProduct(Vector2 v1, Vector2 v2); // Returns the cross product of two vectors
+static float MathVector2SqrLen(Vector2 vector); // Returns the len square root of a vector
+static float MathVector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two vectors
+static inline float MathVector2SqrDistance(Vector2 v1, Vector2 v2); // Returns the square root of distance between two vectors
+static void MathVector2Normalize(Vector2 *vector); // Returns the normalized values of a vector
+static Vector2 MathVector2Add(Vector2 v1, Vector2 v2); // Returns the sum of two given vectors
+static Vector2 MathVector2Subtract(Vector2 v1, Vector2 v2); // Returns the subtract of two given vectors
+static Matrix2x2 MathMatFromRadians(float radians); // Returns a matrix 2x2 from a given radians value
+static inline Matrix2x2 MathMatTranspose(Matrix2x2 matrix); // Returns the transpose of a given matrix 2x2
+static inline Vector2 MathMatVector2Product(Matrix2x2 matrix, Vector2 vector); // Returns product between matrix 2x2 and vector
+static int MathVector2Clip(Vector2 normal, Vector2 *faceA, Vector2 *faceB, float clip); // Returns clipping value based on a normal and two faces
+static Vector2 MathTriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3); // Returns the barycenter of a triangle given by 3 points
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition
+//----------------------------------------------------------------------------------
+
+// Initializes physics values, pointers and creates physics loop thread
+void InitPhysics(void)
+{
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+ // Initialize high resolution timer
+ InitTimerHiRes();
+#endif
+
+ TRACELOG("[PHYSAC] Physics module initialized successfully\n");
+}
+
+// Sets physics global gravity force
+void SetPhysicsGravity(float x, float y)
+{
+ gravityForce.x = x;
+ gravityForce.y = y;
+}
+
+// Creates a new circle physics body with generic parameters
+PhysicsBody CreatePhysicsBodyCircle(Vector2 pos, float radius, float density)
+{
+ PhysicsBody body = CreatePhysicsBodyPolygon(pos, radius, PHYSAC_DEFAULT_CIRCLE_VERTICES, density);
+ return body;
+}
+
+// Creates a new rectangle physics body with generic parameters
+PhysicsBody CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density)
+{
+ // NOTE: Make sure body data is initialized to 0
+ PhysicsBody body = (PhysicsBody)PHYSAC_CALLOC(sizeof(PhysicsBodyData), 1);
+ usedMemory += sizeof(PhysicsBodyData);
+
+ int id = FindAvailableBodyIndex();
+ if (id != -1)
+ {
+ // Initialize new body with generic values
+ body->id = id;
+ body->enabled = true;
+ body->position = pos;
+ body->shape.type = PHYSICS_POLYGON;
+ body->shape.body = body;
+ body->shape.transform = MathMatFromRadians(0.0f);
+ body->shape.vertexData = CreateRectanglePolygon(pos, CLITERAL(Vector2){ width, height });
+
+ // Calculate centroid and moment of inertia
+ Vector2 center = { 0.0f, 0.0f };
+ float area = 0.0f;
+ float inertia = 0.0f;
+
+ for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
+ {
+ // Triangle vertices, third vertex implied as (0, 0)
+ Vector2 p1 = body->shape.vertexData.positions[i];
+ unsigned int nextIndex = (((i + 1) < body->shape.vertexData.vertexCount) ? (i + 1) : 0);
+ Vector2 p2 = body->shape.vertexData.positions[nextIndex];
+
+ float D = MathVector2CrossProduct(p1, p2);
+ float triangleArea = D/2;
+
+ area += triangleArea;
+
+ // Use area to weight the centroid average, not just vertex position
+ center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
+ center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);
+
+ float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
+ float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
+ inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
+ }
+
+ center.x *= 1.0f/area;
+ center.y *= 1.0f/area;
+
+ // Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
+ // Note: this is not really necessary
+ for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
+ {
+ body->shape.vertexData.positions[i].x -= center.x;
+ body->shape.vertexData.positions[i].y -= center.y;
+ }
+
+ body->mass = density*area;
+ body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
+ body->inertia = density*inertia;
+ body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
+ body->staticFriction = 0.4f;
+ body->dynamicFriction = 0.2f;
+ body->restitution = 0.0f;
+ body->useGravity = true;
+ body->isGrounded = false;
+ body->freezeOrient = false;
+
+ // Add new body to bodies pointers array and update bodies count
+ bodies[physicsBodiesCount] = body;
+ physicsBodiesCount++;
+
+ TRACELOG("[PHYSAC] Physic body created successfully (id: %i)\n", body->id);
+ }
+ else TRACELOG("[PHYSAC] Physic body could not be created, PHYSAC_MAX_BODIES reached\n");
+
+ return body;
+}
+
+// Creates a new polygon physics body with generic parameters
+PhysicsBody CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density)
+{
+ PhysicsBody body = (PhysicsBody)PHYSAC_MALLOC(sizeof(PhysicsBodyData));
+ usedMemory += sizeof(PhysicsBodyData);
+
+ int id = FindAvailableBodyIndex();
+ if (id != -1)
+ {
+ // Initialize new body with generic values
+ body->id = id;
+ body->enabled = true;
+ body->position = pos;
+ body->velocity = PHYSAC_VECTOR_ZERO;
+ body->force = PHYSAC_VECTOR_ZERO;
+ body->angularVelocity = 0.0f;
+ body->torque = 0.0f;
+ body->orient = 0.0f;
+ body->shape.type = PHYSICS_POLYGON;
+ body->shape.body = body;
+ body->shape.transform = MathMatFromRadians(0.0f);
+ body->shape.vertexData = CreateDefaultPolygon(radius, sides);
+
+ // Calculate centroid and moment of inertia
+ Vector2 center = { 0.0f, 0.0f };
+ float area = 0.0f;
+ float inertia = 0.0f;
+
+ for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
+ {
+ // Triangle vertices, third vertex implied as (0, 0)
+ Vector2 position1 = body->shape.vertexData.positions[i];
+ unsigned int nextIndex = (((i + 1) < body->shape.vertexData.vertexCount) ? (i + 1) : 0);
+ Vector2 position2 = body->shape.vertexData.positions[nextIndex];
+
+ float cross = MathVector2CrossProduct(position1, position2);
+ float triangleArea = cross/2;
+
+ area += triangleArea;
+
+ // Use area to weight the centroid average, not just vertex position
+ center.x += triangleArea*PHYSAC_K*(position1.x + position2.x);
+ center.y += triangleArea*PHYSAC_K*(position1.y + position2.y);
+
+ float intx2 = position1.x*position1.x + position2.x*position1.x + position2.x*position2.x;
+ float inty2 = position1.y*position1.y + position2.y*position1.y + position2.y*position2.y;
+ inertia += (0.25f*PHYSAC_K*cross)*(intx2 + inty2);
+ }
+
+ center.x *= 1.0f/area;
+ center.y *= 1.0f/area;
+
+ // Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
+ // Note: this is not really necessary
+ for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
+ {
+ body->shape.vertexData.positions[i].x -= center.x;
+ body->shape.vertexData.positions[i].y -= center.y;
+ }
+
+ body->mass = density*area;
+ body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
+ body->inertia = density*inertia;
+ body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
+ body->staticFriction = 0.4f;
+ body->dynamicFriction = 0.2f;
+ body->restitution = 0.0f;
+ body->useGravity = true;
+ body->isGrounded = false;
+ body->freezeOrient = false;
+
+ // Add new body to bodies pointers array and update bodies count
+ bodies[physicsBodiesCount] = body;
+ physicsBodiesCount++;
+
+ TRACELOG("[PHYSAC] Physic body created successfully (id: %i)\n", body->id);
+ }
+ else TRACELOG("[PHYSAC] Physics body could not be created, PHYSAC_MAX_BODIES reached\n");
+
+ return body;
+}
+
+// Adds a force to a physics body
+void PhysicsAddForce(PhysicsBody body, Vector2 force)
+{
+ if (body != NULL) body->force = MathVector2Add(body->force, force);
+}
+
+// Adds an angular force to a physics body
+void PhysicsAddTorque(PhysicsBody body, float amount)
+{
+ if (body != NULL) body->torque += amount;
+}
+
+// Shatters a polygon shape physics body to little physics bodies with explosion force
+void PhysicsShatter(PhysicsBody body, Vector2 position, float force)
+{
+ if (body != NULL)
+ {
+ if (body->shape.type == PHYSICS_POLYGON)
+ {
+ PhysicsVertexData vertexData = body->shape.vertexData;
+ bool collision = false;
+
+ for (unsigned int i = 0; i < vertexData.vertexCount; i++)
+ {
+ Vector2 positionA = body->position;
+ Vector2 positionB = MathMatVector2Product(body->shape.transform, MathVector2Add(body->position, vertexData.positions[i]));
+ unsigned int nextIndex = (((i + 1) < vertexData.vertexCount) ? (i + 1) : 0);
+ Vector2 positionC = MathMatVector2Product(body->shape.transform, MathVector2Add(body->position, vertexData.positions[nextIndex]));
+
+ // Check collision between each triangle
+ float alpha = ((positionB.y - positionC.y)*(position.x - positionC.x) + (positionC.x - positionB.x)*(position.y - positionC.y))/
+ ((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));
+
+ float beta = ((positionC.y - positionA.y)*(position.x - positionC.x) + (positionA.x - positionC.x)*(position.y - positionC.y))/
+ ((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));
+
+ float gamma = 1.0f - alpha - beta;
+
+ if ((alpha > 0.0f) && (beta > 0.0f) & (gamma > 0.0f))
+ {
+ collision = true;
+ break;
+ }
+ }
+
+ if (collision)
+ {
+ int count = vertexData.vertexCount;
+ Vector2 bodyPos = body->position;
+ Vector2 *vertices = (Vector2 *)PHYSAC_MALLOC(sizeof(Vector2)*count);
+ Matrix2x2 trans = body->shape.transform;
+ for (int i = 0; i < count; i++) vertices[i] = vertexData.positions[i];
+
+ // Destroy shattered physics body
+ DestroyPhysicsBody(body);
+
+ for (int i = 0; i < count; i++)
+ {
+ int nextIndex = (((i + 1) < count) ? (i + 1) : 0);
+ Vector2 center = MathTriangleBarycenter(vertices[i], vertices[nextIndex], PHYSAC_VECTOR_ZERO);
+ center = MathVector2Add(bodyPos, center);
+ Vector2 offset = MathVector2Subtract(center, bodyPos);
+
+ PhysicsBody body = CreatePhysicsBodyPolygon(center, 10, 3, 10); // Create polygon physics body with relevant values
+
+ PhysicsVertexData vertexData = { 0 };
+ vertexData.vertexCount = 3;
+
+ vertexData.positions[0] = MathVector2Subtract(vertices[i], offset);
+ vertexData.positions[1] = MathVector2Subtract(vertices[nextIndex], offset);
+ vertexData.positions[2] = MathVector2Subtract(position, center);
+
+ // Separate vertices to avoid unnecessary physics collisions
+ vertexData.positions[0].x *= 0.95f;
+ vertexData.positions[0].y *= 0.95f;
+ vertexData.positions[1].x *= 0.95f;
+ vertexData.positions[1].y *= 0.95f;
+ vertexData.positions[2].x *= 0.95f;
+ vertexData.positions[2].y *= 0.95f;
+
+ // Calculate polygon faces normals
+ for (unsigned int j = 0; j < vertexData.vertexCount; j++)
+ {
+ unsigned int nextVertex = (((j + 1) < vertexData.vertexCount) ? (j + 1) : 0);
+ Vector2 face = MathVector2Subtract(vertexData.positions[nextVertex], vertexData.positions[j]);
+
+ vertexData.normals[j] = CLITERAL(Vector2){ face.y, -face.x };
+ MathVector2Normalize(&vertexData.normals[j]);
+ }
+
+ // Apply computed vertex data to new physics body shape
+ body->shape.vertexData = vertexData;
+ body->shape.transform = trans;
+
+ // Calculate centroid and moment of inertia
+ center = PHYSAC_VECTOR_ZERO;
+ float area = 0.0f;
+ float inertia = 0.0f;
+
+ for (unsigned int j = 0; j < body->shape.vertexData.vertexCount; j++)
+ {
+ // Triangle vertices, third vertex implied as (0, 0)
+ Vector2 p1 = body->shape.vertexData.positions[j];
+ unsigned int nextVertex = (((j + 1) < body->shape.vertexData.vertexCount) ? (j + 1) : 0);
+ Vector2 p2 = body->shape.vertexData.positions[nextVertex];
+
+ float D = MathVector2CrossProduct(p1, p2);
+ float triangleArea = D/2;
+
+ area += triangleArea;
+
+ // Use area to weight the centroid average, not just vertex position
+ center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
+ center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);
+
+ float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
+ float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
+ inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
+ }
+
+ center.x *= 1.0f/area;
+ center.y *= 1.0f/area;
+
+ body->mass = area;
+ body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
+ body->inertia = inertia;
+ body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
+
+ // Calculate explosion force direction
+ Vector2 pointA = body->position;
+ Vector2 pointB = MathVector2Subtract(vertexData.positions[1], vertexData.positions[0]);
+ pointB.x /= 2.0f;
+ pointB.y /= 2.0f;
+ Vector2 forceDirection = MathVector2Subtract(MathVector2Add(pointA, MathVector2Add(vertexData.positions[0], pointB)), body->position);
+ MathVector2Normalize(&forceDirection);
+ forceDirection.x *= force;
+ forceDirection.y *= force;
+
+ // Apply force to new physics body
+ PhysicsAddForce(body, forceDirection);
+ }
+
+ PHYSAC_FREE(vertices);
+ }
+ }
+ }
+ else TRACELOG("[PHYSAC] WARNING: PhysicsShatter: NULL physic body\n");
+}
+
+// Returns the current amount of created physics bodies
+int GetPhysicsBodiesCount(void)
+{
+ return physicsBodiesCount;
+}
+
+// Returns a physics body of the bodies pool at a specific index
+PhysicsBody GetPhysicsBody(int index)
+{
+ PhysicsBody body = NULL;
+
+ if (index < (int)physicsBodiesCount)
+ {
+ body = bodies[index];
+
+ if (body == NULL) TRACELOG("[PHYSAC] WARNING: GetPhysicsBody: NULL physic body\n");
+ }
+ else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
+
+ return body;
+}
+
+// Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
+int GetPhysicsShapeType(int index)
+{
+ int result = -1;
+
+ if (index < (int)physicsBodiesCount)
+ {
+ PhysicsBody body = bodies[index];
+
+ if (body != NULL) result = body->shape.type;
+ else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeType: NULL physic body\n");
+ }
+ else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
+
+ return result;
+}
+
+// Returns the amount of vertices of a physics body shape
+int GetPhysicsShapeVerticesCount(int index)
+{
+ int result = 0;
+
+ if (index < (int)physicsBodiesCount)
+ {
+ PhysicsBody body = bodies[index];
+
+ if (body != NULL)
+ {
+ switch (body->shape.type)
+ {
+ case PHYSICS_CIRCLE: result = PHYSAC_DEFAULT_CIRCLE_VERTICES; break;
+ case PHYSICS_POLYGON: result = body->shape.vertexData.vertexCount; break;
+ default: break;
+ }
+ }
+ else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeVerticesCount: NULL physic body\n");
+ }
+ else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
+
+ return result;
+}
+
+// Returns transformed position of a body shape (body position + vertex transformed position)
+Vector2 GetPhysicsShapeVertex(PhysicsBody body, int vertex)
+{
+ Vector2 position = { 0.0f, 0.0f };
+
+ if (body != NULL)
+ {
+ switch (body->shape.type)
+ {
+ case PHYSICS_CIRCLE:
+ {
+ position.x = body->position.x + cosf(360.0f/PHYSAC_DEFAULT_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
+ position.y = body->position.y + sinf(360.0f/PHYSAC_DEFAULT_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
+ } break;
+ case PHYSICS_POLYGON:
+ {
+ PhysicsVertexData vertexData = body->shape.vertexData;
+ position = MathVector2Add(body->position, MathMatVector2Product(body->shape.transform, vertexData.positions[vertex]));
+ } break;
+ default: break;
+ }
+ }
+ else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeVertex: NULL physic body\n");
+
+ return position;
+}
+
+// Sets physics body shape transform based on radians parameter
+void SetPhysicsBodyRotation(PhysicsBody body, float radians)
+{
+ if (body != NULL)
+ {
+ body->orient = radians;
+
+ if (body->shape.type == PHYSICS_POLYGON) body->shape.transform = MathMatFromRadians(radians);
+ }
+}
+
+// Unitializes and destroys a physics body
+void DestroyPhysicsBody(PhysicsBody body)
+{
+ if (body != NULL)
+ {
+ int id = body->id;
+ int index = -1;
+
+ for (unsigned int i = 0; i < physicsBodiesCount; i++)
+ {
+ if (bodies[i]->id == id)
+ {
+ index = i;
+ break;
+ }
+ }
+
+ if (index == -1)
+ {
+ TRACELOG("[PHYSAC] WARNING: Requested body (id: %i) can not be found\n", id);
+ return; // Prevent access to index -1
+ }
+
+ // Free body allocated memory
+ PHYSAC_FREE(body);
+ usedMemory -= sizeof(PhysicsBodyData);
+ bodies[index] = NULL;
+
+ // Reorder physics bodies pointers array and its catched index
+ for (unsigned int i = index; i < physicsBodiesCount; i++)
+ {
+ if ((i + 1) < physicsBodiesCount) bodies[i] = bodies[i + 1];
+ }
+
+ // Update physics bodies count
+ physicsBodiesCount--;
+
+ TRACELOG("[PHYSAC] Physic body destroyed successfully (id: %i)\n", id);
+ }
+ else TRACELOG("[PHYSAC] WARNING: DestroyPhysicsBody: NULL physic body\n");
+}
+
+// Destroys created physics bodies and manifolds and resets global values
+void ResetPhysics(void)
+{
+ if (physicsBodiesCount > 0)
+ {
+ // Unitialize physics bodies dynamic memory allocations
+ for (int i = physicsBodiesCount - 1; i >= 0; i--)
+ {
+ PhysicsBody body = bodies[i];
+
+ if (body != NULL)
+ {
+ PHYSAC_FREE(body);
+ bodies[i] = NULL;
+ usedMemory -= sizeof(PhysicsBodyData);
+ }
+ }
+
+ physicsBodiesCount = 0;
+ }
+
+ if (physicsManifoldsCount > 0)
+ {
+ // Unitialize physics manifolds dynamic memory allocations
+ for (int i = physicsManifoldsCount - 1; i >= 0; i--)
+ {
+ PhysicsManifold manifold = contacts[i];
+
+ if (manifold != NULL)
+ {
+ PHYSAC_FREE(manifold);
+ contacts[i] = NULL;
+ usedMemory -= sizeof(PhysicsManifoldData);
+ }
+ }
+
+ physicsManifoldsCount = 0;
+ }
+
+ TRACELOG("[PHYSAC] Physics module reseted successfully\n");
+}
+
+// Unitializes physics pointers and exits physics loop thread
+void ClosePhysics(void)
+{
+ // Unitialize physics manifolds dynamic memory allocations
+ if (physicsManifoldsCount > 0)
+ {
+ for (int i = physicsManifoldsCount - 1; i >= 0; i--) DestroyPhysicsManifold(contacts[i]);
+ }
+
+ // Unitialize physics bodies dynamic memory allocations
+ if (physicsBodiesCount > 0)
+ {
+ for (int i = physicsBodiesCount - 1; i >= 0; i--) DestroyPhysicsBody(bodies[i]);
+ }
+
+ // Trace log info
+ if ((physicsBodiesCount > 0) || (usedMemory != 0))
+ {
+ TRACELOG("[PHYSAC] WARNING: Physics module closed with unallocated bodies (BODIES: %i, MEMORY: %i bytes)\n", physicsBodiesCount, usedMemory);
+ }
+ else if ((physicsManifoldsCount > 0) || (usedMemory != 0))
+ {
+ TRACELOG("[PHYSAC] WARNING: Pysics module closed with unallocated manifolds (MANIFOLDS: %i, MEMORY: %i bytes)\n", physicsManifoldsCount, usedMemory);
+ }
+ else TRACELOG("[PHYSAC] Physics module closed successfully\n");
+}
+
+// Update physics system
+// Physics steps are launched at a fixed time step if enabled
+void UpdatePhysics(void)
+{
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+ static double deltaTimeAccumulator = 0.0;
+
+ // Calculate current time (ms)
+ currentTime = GetCurrentTime();
+
+ // Calculate current delta time (ms)
+ const double delta = currentTime - startTime;
+
+ // Store the time elapsed since the last frame began
+ deltaTimeAccumulator += delta;
+
+ // Fixed time stepping loop
+ while (deltaTimeAccumulator >= deltaTime)
+ {
+ UpdatePhysicsStep();
+ deltaTimeAccumulator -= deltaTime;
+ }
+
+ // Record the starting of this frame
+ startTime = currentTime;
+#else
+ UpdatePhysicsStep();
+#endif
+}
+
+void SetPhysicsTimeStep(double delta)
+{
+ deltaTime = delta;
+}
+
+//----------------------------------------------------------------------------------
+// Module Internal Functions Definition
+//----------------------------------------------------------------------------------
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+// Initializes hi-resolution MONOTONIC timer
+static void InitTimerHiRes(void)
+{
+#if defined(_WIN32)
+ QueryPerformanceFrequency((unsigned long long int *) &frequency);
+#endif
+
+#if defined(__EMSCRIPTEN__) || defined(__linux__)
+ struct timespec now;
+ if (clock_gettime(CLOCK_MONOTONIC, &now) == 0) frequency = 1000000000;
+#endif
+
+#if defined(__APPLE__)
+ mach_timebase_info_data_t timebase;
+ mach_timebase_info(&timebase);
+ frequency = (timebase.denom*1e9)/timebase.numer;
+#endif
+
+ baseClockTicks = (double)GetClockTicks(); // Get MONOTONIC clock time offset
+ startTime = GetCurrentTime(); // Get current time in milliseconds
+}
+
+// Get hi-res MONOTONIC time measure in clock ticks
+static unsigned long long int GetClockTicks(void)
+{
+ unsigned long long int value = 0;
+
+#if defined(_WIN32)
+ QueryPerformanceCounter((unsigned long long int *) &value);
+#endif
+
+#if defined(__linux__)
+ struct timespec now;
+ clock_gettime(CLOCK_MONOTONIC, &now);
+ value = (unsigned long long int)now.tv_sec*(unsigned long long int)1000000000 + (unsigned long long int)now.tv_nsec;
+#endif
+
+#if defined(__APPLE__)
+ value = mach_absolute_time();
+#endif
+
+ return value;
+}
+
+// Get current time in milliseconds
+static double GetCurrentTime(void)
+{
+ return (double)(GetClockTicks() - baseClockTicks)/frequency*1000;
+}
+#endif // !PHYSAC_AVOID_TIMMING_SYSTEM
+
+// Update physics step (dynamics, collisions and position corrections)
+static void UpdatePhysicsStep(void)
+{
+ // Clear previous generated collisions information
+ for (int i = (int)physicsManifoldsCount - 1; i >= 0; i--)
+ {
+ PhysicsManifold manifold = contacts[i];
+ if (manifold != NULL) DestroyPhysicsManifold(manifold);
+ }
+
+ // Reset physics bodies grounded state
+ for (unsigned int i = 0; i < physicsBodiesCount; i++)
+ {
+ PhysicsBody body = bodies[i];
+ body->isGrounded = false;
+ }
+
+ // Generate new collision information
+ for (unsigned int i = 0; i < physicsBodiesCount; i++)
+ {
+ PhysicsBody bodyA = bodies[i];
+
+ if (bodyA != NULL)
+ {
+ for (unsigned int j = i + 1; j < physicsBodiesCount; j++)
+ {
+ PhysicsBody bodyB = bodies[j];
+
+ if (bodyB != NULL)
+ {
+ if ((bodyA->inverseMass == 0) && (bodyB->inverseMass == 0)) continue;
+
+ PhysicsManifold manifold = CreatePhysicsManifold(bodyA, bodyB);
+ SolvePhysicsManifold(manifold);
+
+ if (manifold->contactsCount > 0)
+ {
+ // Create a new manifold with same information as previously solved manifold and add it to the manifolds pool last slot
+ PhysicsManifold manifold = CreatePhysicsManifold(bodyA, bodyB);
+ manifold->penetration = manifold->penetration;
+ manifold->normal = manifold->normal;
+ manifold->contacts[0] = manifold->contacts[0];
+ manifold->contacts[1] = manifold->contacts[1];
+ manifold->contactsCount = manifold->contactsCount;
+ manifold->restitution = manifold->restitution;
+ manifold->dynamicFriction = manifold->dynamicFriction;
+ manifold->staticFriction = manifold->staticFriction;
+ }
+ }
+ }
+ }
+ }
+
+ // Integrate forces to physics bodies
+ for (unsigned int i = 0; i < physicsBodiesCount; i++)
+ {
+ PhysicsBody body = bodies[i];
+ if (body != NULL) IntegratePhysicsForces(body);
+ }
+
+ // Initialize physics manifolds to solve collisions
+ for (unsigned int i = 0; i < physicsManifoldsCount; i++)
+ {
+ PhysicsManifold manifold = contacts[i];
+ if (manifold != NULL) InitializePhysicsManifolds(manifold);
+ }
+
+ // Integrate physics collisions impulses to solve collisions
+ for (unsigned int i = 0; i < PHYSAC_COLLISION_ITERATIONS; i++)
+ {
+ for (unsigned int j = 0; j < physicsManifoldsCount; j++)
+ {
+ PhysicsManifold manifold = contacts[i];
+ if (manifold != NULL) IntegratePhysicsImpulses(manifold);
+ }
+ }
+
+ // Integrate velocity to physics bodies
+ for (unsigned int i = 0; i < physicsBodiesCount; i++)
+ {
+ PhysicsBody body = bodies[i];
+ if (body != NULL) IntegratePhysicsVelocity(body);
+ }
+
+ // Correct physics bodies positions based on manifolds collision information
+ for (unsigned int i = 0; i < physicsManifoldsCount; i++)
+ {
+ PhysicsManifold manifold = contacts[i];
+ if (manifold != NULL) CorrectPhysicsPositions(manifold);
+ }
+
+ // Clear physics bodies forces
+ for (unsigned int i = 0; i < physicsBodiesCount; i++)
+ {
+ PhysicsBody body = bodies[i];
+ if (body != NULL)
+ {
+ body->force = PHYSAC_VECTOR_ZERO;
+ body->torque = 0.0f;
+ }
+ }
+}
+
+// Finds a valid index for a new physics body initialization
+static int FindAvailableBodyIndex()
+{
+ int index = -1;
+ for (int i = 0; i < PHYSAC_MAX_BODIES; i++)
+ {
+ int currentId = i;
+
+ // Check if current id already exist in other physics body
+ for (unsigned int k = 0; k < physicsBodiesCount; k++)
+ {
+ if (bodies[k]->id == currentId)
+ {
+ currentId++;
+ break;
+ }
+ }
+
+ // If it is not used, use it as new physics body id
+ if (currentId == (int)i)
+ {
+ index = (int)i;
+ break;
+ }
+ }
+
+ return index;
+}
+
+// Creates a default polygon shape with max vertex distance from polygon pivot
+static PhysicsVertexData CreateDefaultPolygon(float radius, int sides)
+{
+ PhysicsVertexData data = { 0 };
+ data.vertexCount = sides;
+
+ // Calculate polygon vertices positions
+ for (unsigned int i = 0; i < data.vertexCount; i++)
+ {
+ data.positions[i].x = (float)cosf(360.0f/sides*i*PHYSAC_DEG2RAD)*radius;
+ data.positions[i].y = (float)sinf(360.0f/sides*i*PHYSAC_DEG2RAD)*radius;
+ }
+
+ // Calculate polygon faces normals
+ for (int i = 0; i < (int)data.vertexCount; i++)
+ {
+ int nextIndex = (((i + 1) < sides) ? (i + 1) : 0);
+ Vector2 face = MathVector2Subtract(data.positions[nextIndex], data.positions[i]);
+
+ data.normals[i] = CLITERAL(Vector2){ face.y, -face.x };
+ MathVector2Normalize(&data.normals[i]);
+ }
+
+ return data;
+}
+
+// Creates a rectangle polygon shape based on a min and max positions
+static PhysicsVertexData CreateRectanglePolygon(Vector2 pos, Vector2 size)
+{
+ PhysicsVertexData data = { 0 };
+ data.vertexCount = 4;
+
+ // Calculate polygon vertices positions
+ data.positions[0] = CLITERAL(Vector2){ pos.x + size.x/2, pos.y - size.y/2 };
+ data.positions[1] = CLITERAL(Vector2){ pos.x + size.x/2, pos.y + size.y/2 };
+ data.positions[2] = CLITERAL(Vector2){ pos.x - size.x/2, pos.y + size.y/2 };
+ data.positions[3] = CLITERAL(Vector2){ pos.x - size.x/2, pos.y - size.y/2 };
+
+ // Calculate polygon faces normals
+ for (unsigned int i = 0; i < data.vertexCount; i++)
+ {
+ int nextIndex = (((i + 1) < data.vertexCount) ? (i + 1) : 0);
+ Vector2 face = MathVector2Subtract(data.positions[nextIndex], data.positions[i]);
+
+ data.normals[i] = CLITERAL(Vector2){ face.y, -face.x };
+ MathVector2Normalize(&data.normals[i]);
+ }
+
+ return data;
+}
+
+// Finds a valid index for a new manifold initialization
+static int FindAvailableManifoldIndex()
+{
+ int index = -1;
+ for (int i = 0; i < PHYSAC_MAX_MANIFOLDS; i++)
+ {
+ int currentId = i;
+
+ // Check if current id already exist in other physics body
+ for (unsigned int k = 0; k < physicsManifoldsCount; k++)
+ {
+ if (contacts[k]->id == currentId)
+ {
+ currentId++;
+ break;
+ }
+ }
+
+ // If it is not used, use it as new physics body id
+ if (currentId == i)
+ {
+ index = i;
+ break;
+ }
+ }
+
+ return index;
+}
+
+// Creates a new physics manifold to solve collision
+static PhysicsManifold CreatePhysicsManifold(PhysicsBody a, PhysicsBody b)
+{
+ PhysicsManifold manifold = (PhysicsManifold)PHYSAC_MALLOC(sizeof(PhysicsManifoldData));
+ usedMemory += sizeof(PhysicsManifoldData);
+
+ int id = FindAvailableManifoldIndex();
+ if (id != -1)
+ {
+ // Initialize new manifold with generic values
+ manifold->id = id;
+ manifold->bodyA = a;
+ manifold->bodyB = b;
+ manifold->penetration = 0;
+ manifold->normal = PHYSAC_VECTOR_ZERO;
+ manifold->contacts[0] = PHYSAC_VECTOR_ZERO;
+ manifold->contacts[1] = PHYSAC_VECTOR_ZERO;
+ manifold->contactsCount = 0;
+ manifold->restitution = 0.0f;
+ manifold->dynamicFriction = 0.0f;
+ manifold->staticFriction = 0.0f;
+
+ // Add new body to bodies pointers array and update bodies count
+ contacts[physicsManifoldsCount] = manifold;
+ physicsManifoldsCount++;
+ }
+ else TRACELOG("[PHYSAC] Physic manifold could not be created, PHYSAC_MAX_MANIFOLDS reached\n");
+
+ return manifold;
+}
+
+// Unitializes and destroys a physics manifold
+static void DestroyPhysicsManifold(PhysicsManifold manifold)
+{
+ if (manifold != NULL)
+ {
+ int id = manifold->id;
+ int index = -1;
+
+ for (unsigned int i = 0; i < physicsManifoldsCount; i++)
+ {
+ if (contacts[i]->id == id)
+ {
+ index = i;
+ break;
+ }
+ }
+
+ if (index == -1) return; // Prevent access to index -1
+
+ // Free manifold allocated memory
+ PHYSAC_FREE(manifold);
+ usedMemory -= sizeof(PhysicsManifoldData);
+ contacts[index] = NULL;
+
+ // Reorder physics manifolds pointers array and its catched index
+ for (unsigned int i = index; i < physicsManifoldsCount; i++)
+ {
+ if ((i + 1) < physicsManifoldsCount) contacts[i] = contacts[i + 1];
+ }
+
+ // Update physics manifolds count
+ physicsManifoldsCount--;
+ }
+ else TRACELOG("[PHYSAC] WARNING: DestroyPhysicsManifold: NULL physic manifold\n");
+}
+
+// Solves a created physics manifold between two physics bodies
+static void SolvePhysicsManifold(PhysicsManifold manifold)
+{
+ switch (manifold->bodyA->shape.type)
+ {
+ case PHYSICS_CIRCLE:
+ {
+ switch (manifold->bodyB->shape.type)
+ {
+ case PHYSICS_CIRCLE: SolveCircleToCircle(manifold); break;
+ case PHYSICS_POLYGON: SolveCircleToPolygon(manifold); break;
+ default: break;
+ }
+ } break;
+ case PHYSICS_POLYGON:
+ {
+ switch (manifold->bodyB->shape.type)
+ {
+ case PHYSICS_CIRCLE: SolvePolygonToCircle(manifold); break;
+ case PHYSICS_POLYGON: SolvePolygonToPolygon(manifold); break;
+ default: break;
+ }
+ } break;
+ default: break;
+ }
+
+ // Update physics body grounded state if normal direction is down and grounded state is not set yet in previous manifolds
+ if (!manifold->bodyB->isGrounded) manifold->bodyB->isGrounded = (manifold->normal.y < 0);
+}
+
+// Solves collision between two circle shape physics bodies
+static void SolveCircleToCircle(PhysicsManifold manifold)
+{
+ PhysicsBody bodyA = manifold->bodyA;
+ PhysicsBody bodyB = manifold->bodyB;
+
+ if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+ // Calculate translational vector, which is normal
+ Vector2 normal = MathVector2Subtract(bodyB->position, bodyA->position);
+
+ float distSqr = MathVector2SqrLen(normal);
+ float radius = bodyA->shape.radius + bodyB->shape.radius;
+
+ // Check if circles are not in contact
+ if (distSqr >= radius*radius)
+ {
+ manifold->contactsCount = 0;
+ return;
+ }
+
+ float distance = sqrtf(distSqr);
+ manifold->contactsCount = 1;
+
+ if (distance == 0.0f)
+ {
+ manifold->penetration = bodyA->shape.radius;
+ manifold->normal = CLITERAL(Vector2){ 1.0f, 0.0f };
+ manifold->contacts[0] = bodyA->position;
+ }
+ else
+ {
+ manifold->penetration = radius - distance;
+ manifold->normal = CLITERAL(Vector2){ normal.x/distance, normal.y/distance }; // Faster than using MathVector2Normalize() due to sqrt is already performed
+ manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
+ }
+
+ // Update physics body grounded state if normal direction is down
+ if (!bodyA->isGrounded) bodyA->isGrounded = (manifold->normal.y < 0);
+}
+
+// Solves collision between a circle to a polygon shape physics bodies
+static void SolveCircleToPolygon(PhysicsManifold manifold)
+{
+ PhysicsBody bodyA = manifold->bodyA;
+ PhysicsBody bodyB = manifold->bodyB;
+
+ if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+ manifold->contactsCount = 0;
+
+ // Transform circle center to polygon transform space
+ Vector2 center = bodyA->position;
+ center = MathMatVector2Product(MathMatTranspose(bodyB->shape.transform), MathVector2Subtract(center, bodyB->position));
+
+ // Find edge with minimum penetration
+ // It is the same concept as using support points in SolvePolygonToPolygon
+ float separation = -PHYSAC_FLT_MAX;
+ int faceNormal = 0;
+ PhysicsVertexData vertexData = bodyB->shape.vertexData;
+
+ for (unsigned int i = 0; i < vertexData.vertexCount; i++)
+ {
+ float currentSeparation = MathVector2DotProduct(vertexData.normals[i], MathVector2Subtract(center, vertexData.positions[i]));
+
+ if (currentSeparation > bodyA->shape.radius) return;
+
+ if (currentSeparation > separation)
+ {
+ separation = currentSeparation;
+ faceNormal = i;
+ }
+ }
+
+ // Grab face's vertices
+ Vector2 v1 = vertexData.positions[faceNormal];
+ int nextIndex = (((faceNormal + 1) < (int)vertexData.vertexCount) ? (faceNormal + 1) : 0);
+ Vector2 v2 = vertexData.positions[nextIndex];
+
+ // Check to see if center is within polygon
+ if (separation < PHYSAC_EPSILON)
+ {
+ manifold->contactsCount = 1;
+ Vector2 normal = MathMatVector2Product(bodyB->shape.transform, vertexData.normals[faceNormal]);
+ manifold->normal = CLITERAL(Vector2){ -normal.x, -normal.y };
+ manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
+ manifold->penetration = bodyA->shape.radius;
+ return;
+ }
+
+ // Determine which voronoi region of the edge center of circle lies within
+ float dot1 = MathVector2DotProduct(MathVector2Subtract(center, v1), MathVector2Subtract(v2, v1));
+ float dot2 = MathVector2DotProduct(MathVector2Subtract(center, v2), MathVector2Subtract(v1, v2));
+ manifold->penetration = bodyA->shape.radius - separation;
+
+ if (dot1 <= 0.0f) // Closest to v1
+ {
+ if (MathVector2SqrDistance(center, v1) > bodyA->shape.radius*bodyA->shape.radius) return;
+
+ manifold->contactsCount = 1;
+ Vector2 normal = MathVector2Subtract(v1, center);
+ normal = MathMatVector2Product(bodyB->shape.transform, normal);
+ MathVector2Normalize(&normal);
+ manifold->normal = normal;
+ v1 = MathMatVector2Product(bodyB->shape.transform, v1);
+ v1 = MathVector2Add(v1, bodyB->position);
+ manifold->contacts[0] = v1;
+ }
+ else if (dot2 <= 0.0f) // Closest to v2
+ {
+ if (MathVector2SqrDistance(center, v2) > bodyA->shape.radius*bodyA->shape.radius) return;
+
+ manifold->contactsCount = 1;
+ Vector2 normal = MathVector2Subtract(v2, center);
+ v2 = MathMatVector2Product(bodyB->shape.transform, v2);
+ v2 = MathVector2Add(v2, bodyB->position);
+ manifold->contacts[0] = v2;
+ normal = MathMatVector2Product(bodyB->shape.transform, normal);
+ MathVector2Normalize(&normal);
+ manifold->normal = normal;
+ }
+ else // Closest to face
+ {
+ Vector2 normal = vertexData.normals[faceNormal];
+
+ if (MathVector2DotProduct(MathVector2Subtract(center, v1), normal) > bodyA->shape.radius) return;
+
+ normal = MathMatVector2Product(bodyB->shape.transform, normal);
+ manifold->normal = CLITERAL(Vector2){ -normal.x, -normal.y };
+ manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
+ manifold->contactsCount = 1;
+ }
+}
+
+// Solves collision between a polygon to a circle shape physics bodies
+static void SolvePolygonToCircle(PhysicsManifold manifold)
+{
+ PhysicsBody bodyA = manifold->bodyA;
+ PhysicsBody bodyB = manifold->bodyB;
+
+ if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+ manifold->bodyA = bodyB;
+ manifold->bodyB = bodyA;
+ SolveCircleToPolygon(manifold);
+
+ manifold->normal.x *= -1.0f;
+ manifold->normal.y *= -1.0f;
+}
+
+// Solves collision between two polygons shape physics bodies
+static void SolvePolygonToPolygon(PhysicsManifold manifold)
+{
+ if ((manifold->bodyA == NULL) || (manifold->bodyB == NULL)) return;
+
+ PhysicsShape bodyA = manifold->bodyA->shape;
+ PhysicsShape bodyB = manifold->bodyB->shape;
+ manifold->contactsCount = 0;
+
+ // Check for separating axis with A shape's face planes
+ int faceA = 0;
+ float penetrationA = FindAxisLeastPenetration(&faceA, bodyA, bodyB);
+ if (penetrationA >= 0.0f) return;
+
+ // Check for separating axis with B shape's face planes
+ int faceB = 0;
+ float penetrationB = FindAxisLeastPenetration(&faceB, bodyB, bodyA);
+ if (penetrationB >= 0.0f) return;
+
+ int referenceIndex = 0;
+ bool flip = false; // Always point from A shape to B shape
+
+ PhysicsShape refPoly; // Reference
+ PhysicsShape incPoly; // Incident
+
+ // Determine which shape contains reference face
+ // Checking bias range for penetration
+ if (penetrationA >= (penetrationB*0.95f + penetrationA*0.01f))
+ {
+ refPoly = bodyA;
+ incPoly = bodyB;
+ referenceIndex = faceA;
+ }
+ else
+ {
+ refPoly = bodyB;
+ incPoly = bodyA;
+ referenceIndex = faceB;
+ flip = true;
+ }
+
+ // World space incident face
+ Vector2 incidentFace[2];
+ FindIncidentFace(&incidentFace[0], &incidentFace[1], refPoly, incPoly, referenceIndex);
+
+ // Setup reference face vertices
+ PhysicsVertexData refData = refPoly.vertexData;
+ Vector2 v1 = refData.positions[referenceIndex];
+ referenceIndex = (((referenceIndex + 1) < (int)refData.vertexCount) ? (referenceIndex + 1) : 0);
+ Vector2 v2 = refData.positions[referenceIndex];
+
+ // Transform vertices to world space
+ v1 = MathMatVector2Product(refPoly.transform, v1);
+ v1 = MathVector2Add(v1, refPoly.body->position);
+ v2 = MathMatVector2Product(refPoly.transform, v2);
+ v2 = MathVector2Add(v2, refPoly.body->position);
+
+ // Calculate reference face side normal in world space
+ Vector2 sidePlaneNormal = MathVector2Subtract(v2, v1);
+ MathVector2Normalize(&sidePlaneNormal);
+
+ // Orthogonalize
+ Vector2 refFaceNormal = { sidePlaneNormal.y, -sidePlaneNormal.x };
+ float refC = MathVector2DotProduct(refFaceNormal, v1);
+ float negSide = MathVector2DotProduct(sidePlaneNormal, v1)*-1;
+ float posSide = MathVector2DotProduct(sidePlaneNormal, v2);
+
+ // MathVector2Clip incident face to reference face side planes (due to floating point error, possible to not have required points
+ if (MathVector2Clip(CLITERAL(Vector2){ -sidePlaneNormal.x, -sidePlaneNormal.y }, &incidentFace[0], &incidentFace[1], negSide) < 2) return;
+ if (MathVector2Clip(sidePlaneNormal, &incidentFace[0], &incidentFace[1], posSide) < 2) return;
+
+ // Flip normal if required
+ manifold->normal = (flip ? CLITERAL(Vector2){ -refFaceNormal.x, -refFaceNormal.y } : refFaceNormal);
+
+ // Keep points behind reference face
+ int currentPoint = 0; // MathVector2Clipped points behind reference face
+ float separation = MathVector2DotProduct(refFaceNormal, incidentFace[0]) - refC;
+ if (separation <= 0.0f)
+ {
+ manifold->contacts[currentPoint] = incidentFace[0];
+ manifold->penetration = -separation;
+ currentPoint++;
+ }
+ else manifold->penetration = 0.0f;
+
+ separation = MathVector2DotProduct(refFaceNormal, incidentFace[1]) - refC;
+
+ if (separation <= 0.0f)
+ {
+ manifold->contacts[currentPoint] = incidentFace[1];
+ manifold->penetration += -separation;
+ currentPoint++;
+
+ // Calculate total penetration average
+ manifold->penetration /= currentPoint;
+ }
+
+ manifold->contactsCount = currentPoint;
+}
+
+// Integrates physics forces into velocity
+static void IntegratePhysicsForces(PhysicsBody body)
+{
+ if ((body == NULL) || (body->inverseMass == 0.0f) || !body->enabled) return;
+
+ body->velocity.x += (float)((body->force.x*body->inverseMass)*(deltaTime/2.0));
+ body->velocity.y += (float)((body->force.y*body->inverseMass)*(deltaTime/2.0));
+
+ if (body->useGravity)
+ {
+ body->velocity.x += (float)(gravityForce.x*(deltaTime/1000/2.0));
+ body->velocity.y += (float)(gravityForce.y*(deltaTime/1000/2.0));
+ }
+
+ if (!body->freezeOrient) body->angularVelocity += (float)(body->torque*body->inverseInertia*(deltaTime/2.0));
+}
+
+// Initializes physics manifolds to solve collisions
+static void InitializePhysicsManifolds(PhysicsManifold manifold)
+{
+ PhysicsBody bodyA = manifold->bodyA;
+ PhysicsBody bodyB = manifold->bodyB;
+
+ if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+ // Calculate average restitution, static and dynamic friction
+ manifold->restitution = sqrtf(bodyA->restitution*bodyB->restitution);
+ manifold->staticFriction = sqrtf(bodyA->staticFriction*bodyB->staticFriction);
+ manifold->dynamicFriction = sqrtf(bodyA->dynamicFriction*bodyB->dynamicFriction);
+
+ for (unsigned int i = 0; i < manifold->contactsCount; i++)
+ {
+ // Caculate radius from center of mass to contact
+ Vector2 radiusA = MathVector2Subtract(manifold->contacts[i], bodyA->position);
+ Vector2 radiusB = MathVector2Subtract(manifold->contacts[i], bodyB->position);
+
+ Vector2 crossA = MathVector2Product(radiusA, bodyA->angularVelocity);
+ Vector2 crossB = MathVector2Product(radiusB, bodyB->angularVelocity);
+
+ Vector2 radiusV = { 0.0f, 0.0f };
+ radiusV.x = bodyB->velocity.x + crossB.x - bodyA->velocity.x - crossA.x;
+ radiusV.y = bodyB->velocity.y + crossB.y - bodyA->velocity.y - crossA.y;
+
+ // Determine if we should perform a resting collision or not;
+ // The idea is if the only thing moving this object is gravity, then the collision should be performed without any restitution
+ if (MathVector2SqrLen(radiusV) < (MathVector2SqrLen(CLITERAL(Vector2){ (float)(gravityForce.x*deltaTime/1000), (float)(gravityForce.y*deltaTime/1000) }) + PHYSAC_EPSILON)) manifold->restitution = 0;
+ }
+}
+
+// Integrates physics collisions impulses to solve collisions
+static void IntegratePhysicsImpulses(PhysicsManifold manifold)
+{
+ PhysicsBody bodyA = manifold->bodyA;
+ PhysicsBody bodyB = manifold->bodyB;
+
+ if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+ // Early out and positional correct if both objects have infinite mass
+ if (fabs(bodyA->inverseMass + bodyB->inverseMass) <= PHYSAC_EPSILON)
+ {
+ bodyA->velocity = PHYSAC_VECTOR_ZERO;
+ bodyB->velocity = PHYSAC_VECTOR_ZERO;
+ return;
+ }
+
+ for (unsigned int i = 0; i < manifold->contactsCount; i++)
+ {
+ // Calculate radius from center of mass to contact
+ Vector2 radiusA = MathVector2Subtract(manifold->contacts[i], bodyA->position);
+ Vector2 radiusB = MathVector2Subtract(manifold->contacts[i], bodyB->position);
+
+ // Calculate relative velocity
+ Vector2 radiusV = { 0.0f, 0.0f };
+ radiusV.x = bodyB->velocity.x + MathVector2Product(radiusB, bodyB->angularVelocity).x - bodyA->velocity.x - MathVector2Product(radiusA, bodyA->angularVelocity).x;
+ radiusV.y = bodyB->velocity.y + MathVector2Product(radiusB, bodyB->angularVelocity).y - bodyA->velocity.y - MathVector2Product(radiusA, bodyA->angularVelocity).y;
+
+ // Relative velocity along the normal
+ float contactVelocity = MathVector2DotProduct(radiusV, manifold->normal);
+
+ // Do not resolve if velocities are separating
+ if (contactVelocity > 0.0f) return;
+
+ float raCrossN = MathVector2CrossProduct(radiusA, manifold->normal);
+ float rbCrossN = MathVector2CrossProduct(radiusB, manifold->normal);
+
+ float inverseMassSum = bodyA->inverseMass + bodyB->inverseMass + (raCrossN*raCrossN)*bodyA->inverseInertia + (rbCrossN*rbCrossN)*bodyB->inverseInertia;
+
+ // Calculate impulse scalar value
+ float impulse = -(1.0f + manifold->restitution)*contactVelocity;
+ impulse /= inverseMassSum;
+ impulse /= (float)manifold->contactsCount;
+
+ // Apply impulse to each physics body
+ Vector2 impulseV = { manifold->normal.x*impulse, manifold->normal.y*impulse };
+
+ if (bodyA->enabled)
+ {
+ bodyA->velocity.x += bodyA->inverseMass*(-impulseV.x);
+ bodyA->velocity.y += bodyA->inverseMass*(-impulseV.y);
+ if (!bodyA->freezeOrient) bodyA->angularVelocity += bodyA->inverseInertia*MathVector2CrossProduct(radiusA, CLITERAL(Vector2){ -impulseV.x, -impulseV.y });
+ }
+
+ if (bodyB->enabled)
+ {
+ bodyB->velocity.x += bodyB->inverseMass*(impulseV.x);
+ bodyB->velocity.y += bodyB->inverseMass*(impulseV.y);
+ if (!bodyB->freezeOrient) bodyB->angularVelocity += bodyB->inverseInertia*MathVector2CrossProduct(radiusB, impulseV);
+ }
+
+ // Apply friction impulse to each physics body
+ radiusV.x = bodyB->velocity.x + MathVector2Product(radiusB, bodyB->angularVelocity).x - bodyA->velocity.x - MathVector2Product(radiusA, bodyA->angularVelocity).x;
+ radiusV.y = bodyB->velocity.y + MathVector2Product(radiusB, bodyB->angularVelocity).y - bodyA->velocity.y - MathVector2Product(radiusA, bodyA->angularVelocity).y;
+
+ Vector2 tangent = { radiusV.x - (manifold->normal.x*MathVector2DotProduct(radiusV, manifold->normal)), radiusV.y - (manifold->normal.y*MathVector2DotProduct(radiusV, manifold->normal)) };
+ MathVector2Normalize(&tangent);
+
+ // Calculate impulse tangent magnitude
+ float impulseTangent = -MathVector2DotProduct(radiusV, tangent);
+ impulseTangent /= inverseMassSum;
+ impulseTangent /= (float)manifold->contactsCount;
+
+ float absImpulseTangent = (float)fabs(impulseTangent);
+
+ // Don't apply tiny friction impulses
+ if (absImpulseTangent <= PHYSAC_EPSILON) return;
+
+ // Apply coulumb's law
+ Vector2 tangentImpulse = { 0.0f, 0.0f };
+ if (absImpulseTangent < impulse*manifold->staticFriction) tangentImpulse = CLITERAL(Vector2){ tangent.x*impulseTangent, tangent.y*impulseTangent };
+ else tangentImpulse = CLITERAL(Vector2){ tangent.x*-impulse*manifold->dynamicFriction, tangent.y*-impulse*manifold->dynamicFriction };
+
+ // Apply friction impulse
+ if (bodyA->enabled)
+ {
+ bodyA->velocity.x += bodyA->inverseMass*(-tangentImpulse.x);
+ bodyA->velocity.y += bodyA->inverseMass*(-tangentImpulse.y);
+
+ if (!bodyA->freezeOrient) bodyA->angularVelocity += bodyA->inverseInertia*MathVector2CrossProduct(radiusA, CLITERAL(Vector2){ -tangentImpulse.x, -tangentImpulse.y });
+ }
+
+ if (bodyB->enabled)
+ {
+ bodyB->velocity.x += bodyB->inverseMass*(tangentImpulse.x);
+ bodyB->velocity.y += bodyB->inverseMass*(tangentImpulse.y);
+
+ if (!bodyB->freezeOrient) bodyB->angularVelocity += bodyB->inverseInertia*MathVector2CrossProduct(radiusB, tangentImpulse);
+ }
+ }
+}
+
+// Integrates physics velocity into position and forces
+static void IntegratePhysicsVelocity(PhysicsBody body)
+{
+ if ((body == NULL) ||!body->enabled) return;
+
+ body->position.x += (float)(body->velocity.x*deltaTime);
+ body->position.y += (float)(body->velocity.y*deltaTime);
+
+ if (!body->freezeOrient) body->orient += (float)(body->angularVelocity*deltaTime);
+ body->shape.transform = MathMatFromRadians(body->orient);
+
+ IntegratePhysicsForces(body);
+}
+
+// Corrects physics bodies positions based on manifolds collision information
+static void CorrectPhysicsPositions(PhysicsManifold manifold)
+{
+ PhysicsBody bodyA = manifold->bodyA;
+ PhysicsBody bodyB = manifold->bodyB;
+
+ if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+ Vector2 correction = { 0.0f, 0.0f };
+ correction.x = (PHYSAC_MAX(manifold->penetration - PHYSAC_PENETRATION_ALLOWANCE, 0.0f)/(bodyA->inverseMass + bodyB->inverseMass))*manifold->normal.x*PHYSAC_PENETRATION_CORRECTION;
+ correction.y = (PHYSAC_MAX(manifold->penetration - PHYSAC_PENETRATION_ALLOWANCE, 0.0f)/(bodyA->inverseMass + bodyB->inverseMass))*manifold->normal.y*PHYSAC_PENETRATION_CORRECTION;
+
+ if (bodyA->enabled)
+ {
+ bodyA->position.x -= correction.x*bodyA->inverseMass;
+ bodyA->position.y -= correction.y*bodyA->inverseMass;
+ }
+
+ if (bodyB->enabled)
+ {
+ bodyB->position.x += correction.x*bodyB->inverseMass;
+ bodyB->position.y += correction.y*bodyB->inverseMass;
+ }
+}
+
+// Returns the extreme point along a direction within a polygon
+static Vector2 GetSupport(PhysicsShape shape, Vector2 dir)
+{
+ float bestProjection = -PHYSAC_FLT_MAX;
+ Vector2 bestVertex = { 0.0f, 0.0f };
+ PhysicsVertexData data = shape.vertexData;
+
+ for (unsigned int i = 0; i < data.vertexCount; i++)
+ {
+ Vector2 vertex = data.positions[i];
+ float projection = MathVector2DotProduct(vertex, dir);
+
+ if (projection > bestProjection)
+ {
+ bestVertex = vertex;
+ bestProjection = projection;
+ }
+ }
+
+ return bestVertex;
+}
+
+// Finds polygon shapes axis least penetration
+static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB)
+{
+ float bestDistance = -PHYSAC_FLT_MAX;
+ int bestIndex = 0;
+
+ PhysicsVertexData dataA = shapeA.vertexData;
+ //PhysicsVertexData dataB = shapeB.vertexData;
+
+ for (unsigned int i = 0; i < dataA.vertexCount; i++)
+ {
+ // Retrieve a face normal from A shape
+ Vector2 normal = dataA.normals[i];
+ Vector2 transNormal = MathMatVector2Product(shapeA.transform, normal);
+
+ // Transform face normal into B shape's model space
+ Matrix2x2 buT = MathMatTranspose(shapeB.transform);
+ normal = MathMatVector2Product(buT, transNormal);
+
+ // Retrieve support point from B shape along -n
+ Vector2 support = GetSupport(shapeB, CLITERAL(Vector2){ -normal.x, -normal.y });
+
+ // Retrieve vertex on face from A shape, transform into B shape's model space
+ Vector2 vertex = dataA.positions[i];
+ vertex = MathMatVector2Product(shapeA.transform, vertex);
+ vertex = MathVector2Add(vertex, shapeA.body->position);
+ vertex = MathVector2Subtract(vertex, shapeB.body->position);
+ vertex = MathMatVector2Product(buT, vertex);
+
+ // Compute penetration distance in B shape's model space
+ float distance = MathVector2DotProduct(normal, MathVector2Subtract(support, vertex));
+
+ // Store greatest distance
+ if (distance > bestDistance)
+ {
+ bestDistance = distance;
+ bestIndex = i;
+ }
+ }
+
+ *faceIndex = bestIndex;
+ return bestDistance;
+}
+
+// Finds two polygon shapes incident face
+static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index)
+{
+ PhysicsVertexData refData = ref.vertexData;
+ PhysicsVertexData incData = inc.vertexData;
+
+ Vector2 referenceNormal = refData.normals[index];
+
+ // Calculate normal in incident's frame of reference
+ referenceNormal = MathMatVector2Product(ref.transform, referenceNormal); // To world space
+ referenceNormal = MathMatVector2Product(MathMatTranspose(inc.transform), referenceNormal); // To incident's model space
+
+ // Find most anti-normal face on polygon
+ int incidentFace = 0;
+ float minDot = PHYSAC_FLT_MAX;
+
+ for (unsigned int i = 0; i < incData.vertexCount; i++)
+ {
+ float dot = MathVector2DotProduct(referenceNormal, incData.normals[i]);
+
+ if (dot < minDot)
+ {
+ minDot = dot;
+ incidentFace = i;
+ }
+ }
+
+ // Assign face vertices for incident face
+ *v0 = MathMatVector2Product(inc.transform, incData.positions[incidentFace]);
+ *v0 = MathVector2Add(*v0, inc.body->position);
+ incidentFace = (((incidentFace + 1) < (int)incData.vertexCount) ? (incidentFace + 1) : 0);
+ *v1 = MathMatVector2Product(inc.transform, incData.positions[incidentFace]);
+ *v1 = MathVector2Add(*v1, inc.body->position);
+}
+
+// Returns clipping value based on a normal and two faces
+static int MathVector2Clip(Vector2 normal, Vector2 *faceA, Vector2 *faceB, float clip)
+{
+ int sp = 0;
+ Vector2 out[2] = { *faceA, *faceB };
+
+ // Retrieve distances from each endpoint to the line
+ float distanceA = MathVector2DotProduct(normal, *faceA) - clip;
+ float distanceB = MathVector2DotProduct(normal, *faceB) - clip;
+
+ // If negative (behind plane)
+ if (distanceA <= 0.0f) out[sp++] = *faceA;
+ if (distanceB <= 0.0f) out[sp++] = *faceB;
+
+ // If the points are on different sides of the plane
+ if ((distanceA*distanceB) < 0.0f)
+ {
+ // Push intersection point
+ float alpha = distanceA/(distanceA - distanceB);
+ out[sp] = *faceA;
+ Vector2 delta = MathVector2Subtract(*faceB, *faceA);
+ delta.x *= alpha;
+ delta.y *= alpha;
+ out[sp] = MathVector2Add(out[sp], delta);
+ sp++;
+ }
+
+ // Assign the new converted values
+ *faceA = out[0];
+ *faceB = out[1];
+
+ return sp;
+}
+
+// Returns the barycenter of a triangle given by 3 points
+static Vector2 MathTriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3)
+{
+ Vector2 result = { 0.0f, 0.0f };
+
+ result.x = (v1.x + v2.x + v3.x)/3;
+ result.y = (v1.y + v2.y + v3.y)/3;
+
+ return result;
+}
+
+// Returns the cross product of a vector and a value
+static inline Vector2 MathVector2Product(Vector2 vector, float value)
+{
+ Vector2 result = { -value*vector.y, value*vector.x };
+ return result;
+}
+
+// Returns the cross product of two vectors
+static inline float MathVector2CrossProduct(Vector2 v1, Vector2 v2)
+{
+ return (v1.x*v2.y - v1.y*v2.x);
+}
+
+// Returns the len square root of a vector
+static inline float MathVector2SqrLen(Vector2 vector)
+{
+ return (vector.x*vector.x + vector.y*vector.y);
+}
+
+// Returns the dot product of two vectors
+static inline float MathVector2DotProduct(Vector2 v1, Vector2 v2)
+{
+ return (v1.x*v2.x + v1.y*v2.y);
+}
+
+// Returns the square root of distance between two vectors
+static inline float MathVector2SqrDistance(Vector2 v1, Vector2 v2)
+{
+ Vector2 dir = MathVector2Subtract(v1, v2);
+ return MathVector2DotProduct(dir, dir);
+}
+
+// Returns the normalized values of a vector
+static void MathVector2Normalize(Vector2 *vector)
+{
+ float length, ilength;
+
+ Vector2 aux = *vector;
+ length = sqrtf(aux.x*aux.x + aux.y*aux.y);
+
+ if (length == 0) length = 1.0f;
+
+ ilength = 1.0f/length;
+
+ vector->x *= ilength;
+ vector->y *= ilength;
+}
+
+// Returns the sum of two given vectors
+static inline Vector2 MathVector2Add(Vector2 v1, Vector2 v2)
+{
+ Vector2 result = { v1.x + v2.x, v1.y + v2.y };
+ return result;
+}
+
+// Returns the subtract of two given vectors
+static inline Vector2 MathVector2Subtract(Vector2 v1, Vector2 v2)
+{
+ Vector2 result = { v1.x - v2.x, v1.y - v2.y };
+ return result;
+}
+
+// Creates a matrix 2x2 from a given radians value
+static Matrix2x2 MathMatFromRadians(float radians)
+{
+ float cos = cosf(radians);
+ float sin = sinf(radians);
+
+ Matrix2x2 result = { cos, -sin, sin, cos };
+ return result;
+}
+
+// Returns the transpose of a given matrix 2x2
+static inline Matrix2x2 MathMatTranspose(Matrix2x2 matrix)
+{
+ Matrix2x2 result = { matrix.m00, matrix.m10, matrix.m01, matrix.m11 };
+ return result;
+}
+
+// Multiplies a vector by a matrix 2x2
+static inline Vector2 MathMatVector2Product(Matrix2x2 matrix, Vector2 vector)
+{
+ Vector2 result = { matrix.m00*vector.x + matrix.m01*vector.y, matrix.m10*vector.x + matrix.m11*vector.y };
+ return result;
+}
+
+#endif // PHYSAC_IMPLEMENTATION