1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
|
// jar_xm.h
//
// ORIGINAL LICENSE - FOR LIBXM:
//
// Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com>
// Contributor: Dan Spencer <dan@atomicpotato.net>
// Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com>
// This program is free software. It comes without any warranty, to the
// extent permitted by applicable law. You can redistribute it and/or
// modify it under the terms of the Do What The Fuck You Want To Public
// License, Version 2, as published by Sam Hocevar. See
// http://sam.zoy.org/wtfpl/COPYING for more details.
//
// HISTORY:
// v0.1.0 2016-02-22 jar_xm.h - development by Joshua Reisenauer, MAR 2016
// v0.2.1 2021-03-07 m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling)
// v0.2.2 2021-03-09 m4ntr0n1c: Add complete debug solution (raylib.h must be included)
// v0.2.3 2021-03-11 m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop
// v0.2.4 2021-03-17 m4ntr0n1c: Sanitize code for readability
// v0.2.5 2021-03-22 m4ntr0n1c: Minor adjustments
// v0.2.6 2021-04-01 m4ntr0n1c: Minor fixes and optimisation
// v0.3.0 2021-04-03 m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code
// v0.3.1 2021-04-04 m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments
//
// USAGE:
//
// In ONE source file, put:
//
// #define JAR_XM_IMPLEMENTATION
// #include "jar_xm.h"
//
// Other source files should just include jar_xm.h
//
// SAMPLE CODE:
//
// jar_xm_context_t *musicptr;
// float musicBuffer[48000 / 60];
// int intro_load(void)
// {
// jar_xm_create_context_from_file(&musicptr, 48000, "Song.XM");
// return 1;
// }
// int intro_unload(void)
// {
// jar_xm_free_context(musicptr);
// return 1;
// }
// int intro_tick(long counter)
// {
// jar_xm_generate_samples(musicptr, musicBuffer, (48000 / 60) / 2);
// if(IsKeyDown(KEY_ENTER))
// return 1;
// return 0;
// }
//
#ifndef INCLUDE_JAR_XM_H
#define INCLUDE_JAR_XM_H
#include <stdint.h>
#define JAR_XM_DEBUG 0
#define JAR_XM_DEFENSIVE 1
//#define JAR_XM_RAYLIB 0 // set to 0 to disable the RayLib visualizer extension
// Allow custom memory allocators
#ifndef JARXM_MALLOC
#define JARXM_MALLOC(sz) malloc(sz)
#endif
#ifndef JARXM_FREE
#define JARXM_FREE(p) free(p)
#endif
//-------------------------------------------------------------------------------
struct jar_xm_context_s;
typedef struct jar_xm_context_s jar_xm_context_t;
#ifdef __cplusplus
extern "C" {
#endif
//** Create a XM context.
// * @param moddata the contents of the module
// * @param rate play rate in Hz, recommended value of 48000
// * @returns 0 on success
// * @returns 1 if module data is not sane
// * @returns 2 if memory allocation failed
// * @returns 3 unable to open input file
// * @returns 4 fseek() failed
// * @returns 5 fread() failed
// * @returns 6 unkown error
// * @deprecated This function is unsafe!
// * @see jar_xm_create_context_safe()
int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename);
//** Create a XM context.
// * @param moddata the contents of the module
// * @param rate play rate in Hz, recommended value of 48000
// * @returns 0 on success
// * @returns 1 if module data is not sane
// * @returns 2 if memory allocation failed
// * @deprecated This function is unsafe!
// * @see jar_xm_create_context_safe()
int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate);
//** Create a XM context.
// * @param moddata the contents of the module
// * @param moddata_length the length of the contents of the module, in bytes
// * @param rate play rate in Hz, recommended value of 48000
// * @returns 0 on success
// * @returns 1 if module data is not sane
// * @returns 2 if memory allocation failed
int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate);
//** Free a XM context created by jar_xm_create_context(). */
void jar_xm_free_context(jar_xm_context_t* ctx);
//** Play the module and put the sound samples in an output buffer.
// * @param output buffer of 2*numsamples elements (A left and right value for each sample)
// * @param numsamples number of samples to generate
void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples);
//** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer.
// * @param output buffer of 2*numsamples elements (A left and right value for each sample)
// * @param numsamples number of samples to generate
void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) {
float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
jar_xm_generate_samples(ctx, musicBuffer, numsamples);
if(output){
for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int
}
JARXM_FREE(musicBuffer);
}
//** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer.
// * @param output buffer of 2*numsamples elements (A left and right value for each sample)
// * @param numsamples number of samples to generate
void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) {
float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
jar_xm_generate_samples(ctx, musicBuffer, numsamples);
if(output){
for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit
}
JARXM_FREE(musicBuffer);
}
//** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count().
// * @param loopcnt maximum number of loops. Use 0 to loop indefinitely.
void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt);
//** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc.
uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx);
//** Mute or unmute a channel.
// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
// * @return whether the channel was muted.
bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool);
//** Mute or unmute an instrument.
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
// * @return whether the instrument was muted.
bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool);
//** Get the module name as a NUL-terminated string.
const char* jar_xm_get_module_name(jar_xm_context_t* ctx);
//** Get the tracker name as a NUL-terminated string.
const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx);
//** Get the number of channels.
uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx);
//** Get the module length (in patterns).
uint16_t jar_xm_get_module_length(jar_xm_context_t*);
//** Get the number of patterns.
uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx);
//** Get the number of rows of a pattern.
// * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1.
uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t);
//** Get the number of instruments.
uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx);
//** Get the number of samples of an instrument.
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t);
//** Get the current module speed.
// * @param bpm will receive the current BPM
// * @param tempo will receive the current tempo (ticks per line)
void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo);
//** Get the current position in the module being played.
// * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table)
// * @param pattern if not NULL, will receive the current pattern number
// * @param row if not NULL, will receive the current row
// * @param samples if not NULL, will receive the total number of
// * generated samples (divide by sample rate to get seconds of generated audio)
void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples);
//** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel.
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t);
//** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel.
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
// * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1.
uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample);
//** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel.
// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t);
//** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples.
// * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass.
// * @note This function is very slow and should only be run once, if at all.
uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx);
#ifdef __cplusplus
}
#endif
//-------------------------------------------------------------------------------
#ifdef JAR_XM_IMPLEMENTATION
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <string.h>
#if JAR_XM_DEBUG //JAR_XM_DEBUG defined as 0
#include <stdio.h>
#define DEBUG(fmt, ...) do { \
fprintf(stderr, "%s(): " fmt "\n", __func__, __VA_ARGS__); \
fflush(stderr); \
} while(0)
#else
#define DEBUG(...)
#endif
#if jar_xm_BIG_ENDIAN
#error "Big endian platforms are not yet supported, sorry"
/* Make sure the compiler stops, even if #error is ignored */
extern int __fail[-1];
#endif
/* ----- XM constants ----- */
#define SAMPLE_NAME_LENGTH 22
#define INSTRUMENT_NAME_LENGTH 22
#define MODULE_NAME_LENGTH 20
#define TRACKER_NAME_LENGTH 20
#define PATTERN_ORDER_TABLE_LENGTH 256
#define NUM_NOTES 96 // from 1 to 96, where 1 = C-0
#define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max
#define MAX_NUM_ROWS 256
#define jar_xm_SAMPLE_RAMPING_POINTS 8
/* ----- Data types ----- */
enum jar_xm_waveform_type_e {
jar_xm_SINE_WAVEFORM = 0,
jar_xm_RAMP_DOWN_WAVEFORM = 1,
jar_xm_SQUARE_WAVEFORM = 2,
jar_xm_RANDOM_WAVEFORM = 3,
jar_xm_RAMP_UP_WAVEFORM = 4,
};
typedef enum jar_xm_waveform_type_e jar_xm_waveform_type_t;
enum jar_xm_loop_type_e {
jar_xm_NO_LOOP,
jar_xm_FORWARD_LOOP,
jar_xm_PING_PONG_LOOP,
};
typedef enum jar_xm_loop_type_e jar_xm_loop_type_t;
enum jar_xm_frequency_type_e {
jar_xm_LINEAR_FREQUENCIES,
jar_xm_AMIGA_FREQUENCIES,
};
typedef enum jar_xm_frequency_type_e jar_xm_frequency_type_t;
struct jar_xm_envelope_point_s {
uint16_t frame;
uint16_t value;
};
typedef struct jar_xm_envelope_point_s jar_xm_envelope_point_t;
struct jar_xm_envelope_s {
jar_xm_envelope_point_t points[NUM_ENVELOPE_POINTS];
uint8_t num_points;
uint8_t sustain_point;
uint8_t loop_start_point;
uint8_t loop_end_point;
bool enabled;
bool sustain_enabled;
bool loop_enabled;
};
typedef struct jar_xm_envelope_s jar_xm_envelope_t;
struct jar_xm_sample_s {
char name[SAMPLE_NAME_LENGTH + 1];
int8_t bits; /* Either 8 or 16 */
int8_t stereo;
uint32_t length;
uint32_t loop_start;
uint32_t loop_length;
uint32_t loop_end;
float volume;
int8_t finetune;
jar_xm_loop_type_t loop_type;
float panning;
int8_t relative_note;
uint64_t latest_trigger;
float* data;
};
typedef struct jar_xm_sample_s jar_xm_sample_t;
struct jar_xm_instrument_s {
char name[INSTRUMENT_NAME_LENGTH + 1];
uint16_t num_samples;
uint8_t sample_of_notes[NUM_NOTES];
jar_xm_envelope_t volume_envelope;
jar_xm_envelope_t panning_envelope;
jar_xm_waveform_type_t vibrato_type;
uint8_t vibrato_sweep;
uint8_t vibrato_depth;
uint8_t vibrato_rate;
uint16_t volume_fadeout;
uint64_t latest_trigger;
bool muted;
jar_xm_sample_t* samples;
};
typedef struct jar_xm_instrument_s jar_xm_instrument_t;
struct jar_xm_pattern_slot_s {
uint8_t note; /* 1-96, 97 = Key Off note */
uint8_t instrument; /* 1-128 */
uint8_t volume_column;
uint8_t effect_type;
uint8_t effect_param;
};
typedef struct jar_xm_pattern_slot_s jar_xm_pattern_slot_t;
struct jar_xm_pattern_s {
uint16_t num_rows;
jar_xm_pattern_slot_t* slots; /* Array of size num_rows * num_channels */
};
typedef struct jar_xm_pattern_s jar_xm_pattern_t;
struct jar_xm_module_s {
char name[MODULE_NAME_LENGTH + 1];
char trackername[TRACKER_NAME_LENGTH + 1];
uint16_t length;
uint16_t restart_position;
uint16_t num_channels;
uint16_t num_patterns;
uint16_t num_instruments;
uint16_t linear_interpolation;
uint16_t ramping;
jar_xm_frequency_type_t frequency_type;
uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH];
jar_xm_pattern_t* patterns;
jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */
};
typedef struct jar_xm_module_s jar_xm_module_t;
struct jar_xm_channel_context_s {
float note;
float orig_note; /* The original note before effect modifications, as read in the pattern. */
jar_xm_instrument_t* instrument; /* Could be NULL */
jar_xm_sample_t* sample; /* Could be NULL */
jar_xm_pattern_slot_t* current;
float sample_position;
float period;
float frequency;
float step;
bool ping; /* For ping-pong samples: true is -->, false is <-- */
float volume; /* Ideally between 0 (muted) and 1 (loudest) */
float panning; /* Between 0 (left) and 1 (right); 0.5 is centered */
uint16_t autovibrato_ticks;
bool sustained;
float fadeout_volume;
float volume_envelope_volume;
float panning_envelope_panning;
uint16_t volume_envelope_frame_count;
uint16_t panning_envelope_frame_count;
float autovibrato_note_offset;
bool arp_in_progress;
uint8_t arp_note_offset;
uint8_t volume_slide_param;
uint8_t fine_volume_slide_param;
uint8_t global_volume_slide_param;
uint8_t panning_slide_param;
uint8_t portamento_up_param;
uint8_t portamento_down_param;
uint8_t fine_portamento_up_param;
uint8_t fine_portamento_down_param;
uint8_t extra_fine_portamento_up_param;
uint8_t extra_fine_portamento_down_param;
uint8_t tone_portamento_param;
float tone_portamento_target_period;
uint8_t multi_retrig_param;
uint8_t note_delay_param;
uint8_t pattern_loop_origin; /* Where to restart a E6y loop */
uint8_t pattern_loop_count; /* How many loop passes have been done */
bool vibrato_in_progress;
jar_xm_waveform_type_t vibrato_waveform;
bool vibrato_waveform_retrigger; /* True if a new note retriggers the waveform */
uint8_t vibrato_param;
uint16_t vibrato_ticks; /* Position in the waveform */
float vibrato_note_offset;
jar_xm_waveform_type_t tremolo_waveform;
bool tremolo_waveform_retrigger;
uint8_t tremolo_param;
uint8_t tremolo_ticks;
float tremolo_volume;
uint8_t tremor_param;
bool tremor_on;
uint64_t latest_trigger;
bool muted;
//* These values are updated at the end of each tick, to save a couple of float operations on every generated sample.
float target_panning;
float target_volume;
unsigned long frame_count;
float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS];
float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS];
float curr_left;
float curr_right;
float actual_panning;
float actual_volume;
};
typedef struct jar_xm_channel_context_s jar_xm_channel_context_t;
struct jar_xm_context_s {
void* allocated_memory;
jar_xm_module_t module;
uint32_t rate;
uint16_t default_tempo; // Number of ticks per row
uint16_t default_bpm;
float default_global_volume;
uint16_t tempo; // Number of ticks per row
uint16_t bpm;
float global_volume;
float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */
float panning_ramp; /* Same for panning. */
uint8_t current_table_index;
uint8_t current_row;
uint16_t current_tick; /* Can go below 255, with high tempo and a pattern delay */
float remaining_samples_in_tick;
uint64_t generated_samples;
bool position_jump;
bool pattern_break;
uint8_t jump_dest;
uint8_t jump_row;
uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */
uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */
uint8_t loop_count;
uint8_t max_loop_count;
jar_xm_channel_context_t* channels;
};
#if JAR_XM_DEFENSIVE
//** Check the module data for errors/inconsistencies.
// * @returns 0 if everything looks OK. Module should be safe to load.
int jar_xm_check_sanity_preload(const char*, size_t);
//** Check a loaded module for errors/inconsistencies.
// * @returns 0 if everything looks OK.
int jar_xm_check_sanity_postload(jar_xm_context_t*);
#endif
//** Get the number of bytes needed to store the module data in a dynamically allocated blank context.
// * Things that are dynamically allocated:
// * - sample data
// * - sample structures in instruments
// * - pattern data
// * - row loop count arrays
// * - pattern structures in module
// * - instrument structures in module
// * - channel contexts
// * - context structure itself
// * @returns 0 if everything looks OK.
size_t jar_xm_get_memory_needed_for_context(const char*, size_t);
//** Populate the context from module data.
// * @returns pointer to the memory pool
char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*);
int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) {
return jar_xm_create_context_safe(ctxp, moddata, SIZE_MAX, rate);
}
#define ALIGN(x, b) (((x) + ((b) - 1)) & ~((b) - 1))
#define ALIGN_PTR(x, b) (void*)(((uintptr_t)(x) + ((b) - 1)) & ~((b) - 1))
int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, size_t moddata_length, uint32_t rate) {
#if JAR_XM_DEFENSIVE
int ret;
#endif
size_t bytes_needed;
char* mempool;
jar_xm_context_t* ctx;
#if JAR_XM_DEFENSIVE
if((ret = jar_xm_check_sanity_preload(moddata, moddata_length))) {
DEBUG("jar_xm_check_sanity_preload() returned %i, module is not safe to load", ret);
return 1;
}
#endif
bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length);
mempool = JARXM_MALLOC(bytes_needed);
if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */
DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool);
return 2;
}
/* Initialize most of the fields to 0, 0.f, NULL or false depending on type */
memset(mempool, 0, bytes_needed);
ctx = (*ctxp = (jar_xm_context_t *)mempool);
ctx->allocated_memory = mempool; /* Keep original pointer for JARXM_FREE() */
mempool += sizeof(jar_xm_context_t);
ctx->rate = rate;
mempool = jar_xm_load_module(ctx, moddata, moddata_length, mempool);
mempool = ALIGN_PTR(mempool, 16);
ctx->channels = (jar_xm_channel_context_t*)mempool;
mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t);
mempool = ALIGN_PTR(mempool, 16);
ctx->default_global_volume = 1.f;
ctx->global_volume = ctx->default_global_volume;
ctx->volume_ramp = (1.f / 128.f);
ctx->panning_ramp = (1.f / 128.f);
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
jar_xm_channel_context_t *ch = ctx->channels + i;
ch->ping = true;
ch->vibrato_waveform = jar_xm_SINE_WAVEFORM;
ch->vibrato_waveform_retrigger = true;
ch->tremolo_waveform = jar_xm_SINE_WAVEFORM;
ch->tremolo_waveform_retrigger = true;
ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f;
ch->panning = ch->panning_envelope_panning = .5f;
ch->actual_volume = .0f;
ch->actual_panning = .5f;
}
mempool = ALIGN_PTR(mempool, 16);
ctx->row_loop_count = (uint8_t *)mempool;
mempool += MAX_NUM_ROWS * sizeof(uint8_t);
#if JAR_XM_DEFENSIVE
if((ret = jar_xm_check_sanity_postload(ctx))) { DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret);
jar_xm_free_context(ctx);
return 1;
}
#endif
return 0;
}
void jar_xm_free_context(jar_xm_context_t *ctx) {
if (ctx != NULL) { JARXM_FREE(ctx->allocated_memory); }
}
void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) {
ctx->max_loop_count = loopcnt;
}
uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) {
return ctx->loop_count;
}
bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) {
bool old = ctx->channels[channel - 1].muted;
ctx->channels[channel - 1].muted = mute;
return old;
}
bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) {
bool old = ctx->module.instruments[instr - 1].muted;
ctx->module.instruments[instr - 1].muted = mute;
return old;
}
const char* jar_xm_get_module_name(jar_xm_context_t *ctx) {
return ctx->module.name;
}
const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) {
return ctx->module.trackername;
}
uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) {
return ctx->module.num_channels;
}
uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) {
return ctx->module.length;
}
uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) {
return ctx->module.num_patterns;
}
uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) {
return ctx->module.patterns[pattern].num_rows;
}
uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) {
return ctx->module.num_instruments;
}
uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) {
return ctx->module.instruments[instrument - 1].num_samples;
}
void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) {
if(bpm) *bpm = ctx->bpm;
if(tempo) *tempo = ctx->tempo;
}
void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) {
if(pattern_index) *pattern_index = ctx->current_table_index;
if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index];
if(row) *row = ctx->current_row;
if(samples) *samples = ctx->generated_samples;
}
uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) {
return ctx->module.instruments[instr - 1].latest_trigger;
}
uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) {
return ctx->module.instruments[instr - 1].samples[sample].latest_trigger;
}
uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) {
return ctx->channels[chn - 1].latest_trigger;
}
//* .xm files are little-endian. (XXX: Are they really?)
//* Bound reader macros.
//* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes.
#define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0)
#define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8))
#define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16))
#define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset)
static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) {
uint8_t *dst_c = dst;
const uint8_t *src_c = src;
/* how many bytes can be copied without overrunning `src` */
size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0;
copy_bytes = copy_bytes > dst_len ? dst_len : copy_bytes;
memcpy(dst_c, src_c + offset, copy_bytes);
/* padded bytes */
memset(dst_c + copy_bytes, 0, dst_len - copy_bytes);
}
#if JAR_XM_DEFENSIVE
int jar_xm_check_sanity_preload(const char* module, size_t module_length) {
if(module_length < 60) { return 4; }
if(memcmp("Extended Module: ", module, 17) != 0) { return 1; }
if(module[37] != 0x1A) { return 2; }
if(module[59] != 0x01 || module[58] != 0x04) { return 3; } /* Not XM 1.04 */
return 0;
}
int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) {
/* Check the POT */
for(uint8_t i = 0; i < ctx->module.length; ++i) {
if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) {
if(i+1 == ctx->module.length && ctx->module.length > 1) {
DEBUG("trimming invalid POT at pos %X", i);
--ctx->module.length;
} else {
DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]);
return 1;
}
}
}
return 0;
}
#endif
size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) {
size_t memory_needed = 0;
size_t offset = 60; /* 60 = Skip the first header */
uint16_t num_channels;
uint16_t num_patterns;
uint16_t num_instruments;
/* Read the module header */
num_channels = READ_U16(offset + 8);
num_patterns = READ_U16(offset + 10);
memory_needed += num_patterns * sizeof(jar_xm_pattern_t);
memory_needed = ALIGN(memory_needed, 16);
num_instruments = READ_U16(offset + 12);
memory_needed += num_instruments * sizeof(jar_xm_instrument_t);
memory_needed = ALIGN(memory_needed, 16);
memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */
offset += READ_U32(offset); /* Header size */
/* Read pattern headers */
for(uint16_t i = 0; i < num_patterns; ++i) {
uint16_t num_rows;
num_rows = READ_U16(offset + 5);
memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t);
offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */
}
memory_needed = ALIGN(memory_needed, 16);
/* Read instrument headers */
for(uint16_t i = 0; i < num_instruments; ++i) {
uint16_t num_samples;
uint32_t sample_header_size = 0;
uint32_t sample_size_aggregate = 0;
num_samples = READ_U16(offset + 27);
memory_needed += num_samples * sizeof(jar_xm_sample_t);
if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); }
offset += READ_U32(offset); /* Instrument header size */
for(uint16_t j = 0; j < num_samples; ++j) {
uint32_t sample_size;
uint8_t flags;
sample_size = READ_U32(offset);
flags = READ_U8(offset + 14);
sample_size_aggregate += sample_size;
if(flags & (1 << 4)) { /* 16 bit sample */
memory_needed += sample_size * (sizeof(float) >> 1);
} else { /* 8 bit sample */
memory_needed += sample_size * sizeof(float);
}
offset += sample_header_size;
}
offset += sample_size_aggregate;
}
memory_needed += num_channels * sizeof(jar_xm_channel_context_t);
memory_needed += sizeof(jar_xm_context_t);
return memory_needed;
}
char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t moddata_length, char* mempool) {
size_t offset = 0;
jar_xm_module_t* mod = &(ctx->module);
/* Read XM header */
READ_MEMCPY(mod->name, offset + 17, MODULE_NAME_LENGTH);
READ_MEMCPY(mod->trackername, offset + 38, TRACKER_NAME_LENGTH);
offset += 60;
/* Read module header */
uint32_t header_size = READ_U32(offset);
mod->length = READ_U16(offset + 4);
mod->restart_position = READ_U16(offset + 6);
mod->num_channels = READ_U16(offset + 8);
mod->num_patterns = READ_U16(offset + 10);
mod->num_instruments = READ_U16(offset + 12);
mod->patterns = (jar_xm_pattern_t*)mempool;
mod->linear_interpolation = 1; // Linear interpolation can be set after loading
mod->ramping = 1; // ramping can be set after loading
mempool += mod->num_patterns * sizeof(jar_xm_pattern_t);
mempool = ALIGN_PTR(mempool, 16);
mod->instruments = (jar_xm_instrument_t*)mempool;
mempool += mod->num_instruments * sizeof(jar_xm_instrument_t);
mempool = ALIGN_PTR(mempool, 16);
uint16_t flags = READ_U32(offset + 14);
mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES;
ctx->default_tempo = READ_U16(offset + 16);
ctx->default_bpm = READ_U16(offset + 18);
ctx->tempo =ctx->default_tempo;
ctx->bpm = ctx->default_bpm;
READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH);
offset += header_size;
/* Read patterns */
for(uint16_t i = 0; i < mod->num_patterns; ++i) {
uint16_t packed_patterndata_size = READ_U16(offset + 7);
jar_xm_pattern_t* pat = mod->patterns + i;
pat->num_rows = READ_U16(offset + 5);
pat->slots = (jar_xm_pattern_slot_t*)mempool;
mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t);
offset += READ_U32(offset); /* Pattern header length */
if(packed_patterndata_size == 0) { /* No pattern data is present */
memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels);
} else {
/* This isn't your typical for loop */
for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) {
uint8_t note = READ_U8(offset + j);
jar_xm_pattern_slot_t* slot = pat->slots + k;
if(note & (1 << 7)) {
/* MSB is set, this is a compressed packet */
++j;
if(note & (1 << 0)) { /* Note follows */
slot->note = READ_U8(offset + j);
++j;
} else {
slot->note = 0;
}
if(note & (1 << 1)) { /* Instrument follows */
slot->instrument = READ_U8(offset + j);
++j;
} else {
slot->instrument = 0;
}
if(note & (1 << 2)) { /* Volume column follows */
slot->volume_column = READ_U8(offset + j);
++j;
} else {
slot->volume_column = 0;
}
if(note & (1 << 3)) { /* Effect follows */
slot->effect_type = READ_U8(offset + j);
++j;
} else {
slot->effect_type = 0;
}
if(note & (1 << 4)) { /* Effect parameter follows */
slot->effect_param = READ_U8(offset + j);
++j;
} else {
slot->effect_param = 0;
}
} else { /* Uncompressed packet */
slot->note = note;
slot->instrument = READ_U8(offset + j + 1);
slot->volume_column = READ_U8(offset + j + 2);
slot->effect_type = READ_U8(offset + j + 3);
slot->effect_param = READ_U8(offset + j + 4);
j += 5;
}
}
}
offset += packed_patterndata_size;
}
mempool = ALIGN_PTR(mempool, 16);
/* Read instruments */
for(uint16_t i = 0; i < ctx->module.num_instruments; ++i) {
uint32_t sample_header_size = 0;
jar_xm_instrument_t* instr = mod->instruments + i;
READ_MEMCPY(instr->name, offset + 4, INSTRUMENT_NAME_LENGTH);
instr->num_samples = READ_U16(offset + 27);
if(instr->num_samples > 0) {
/* Read extra header properties */
sample_header_size = READ_U32(offset + 29);
READ_MEMCPY(instr->sample_of_notes, offset + 33, NUM_NOTES);
instr->volume_envelope.num_points = READ_U8(offset + 225);
instr->panning_envelope.num_points = READ_U8(offset + 226);
for(uint8_t j = 0; j < instr->volume_envelope.num_points; ++j) {
instr->volume_envelope.points[j].frame = READ_U16(offset + 129 + 4 * j);
instr->volume_envelope.points[j].value = READ_U16(offset + 129 + 4 * j + 2);
}
for(uint8_t j = 0; j < instr->panning_envelope.num_points; ++j) {
instr->panning_envelope.points[j].frame = READ_U16(offset + 177 + 4 * j);
instr->panning_envelope.points[j].value = READ_U16(offset + 177 + 4 * j + 2);
}
instr->volume_envelope.sustain_point = READ_U8(offset + 227);
instr->volume_envelope.loop_start_point = READ_U8(offset + 228);
instr->volume_envelope.loop_end_point = READ_U8(offset + 229);
instr->panning_envelope.sustain_point = READ_U8(offset + 230);
instr->panning_envelope.loop_start_point = READ_U8(offset + 231);
instr->panning_envelope.loop_end_point = READ_U8(offset + 232);
uint8_t flags = READ_U8(offset + 233);
instr->volume_envelope.enabled = flags & (1 << 0);
instr->volume_envelope.sustain_enabled = flags & (1 << 1);
instr->volume_envelope.loop_enabled = flags & (1 << 2);
flags = READ_U8(offset + 234);
instr->panning_envelope.enabled = flags & (1 << 0);
instr->panning_envelope.sustain_enabled = flags & (1 << 1);
instr->panning_envelope.loop_enabled = flags & (1 << 2);
instr->vibrato_type = READ_U8(offset + 235);
if(instr->vibrato_type == 2) {
instr->vibrato_type = 1;
} else if(instr->vibrato_type == 1) {
instr->vibrato_type = 2;
}
instr->vibrato_sweep = READ_U8(offset + 236);
instr->vibrato_depth = READ_U8(offset + 237);
instr->vibrato_rate = READ_U8(offset + 238);
instr->volume_fadeout = READ_U16(offset + 239);
instr->samples = (jar_xm_sample_t*)mempool;
mempool += instr->num_samples * sizeof(jar_xm_sample_t);
} else {
instr->samples = NULL;
}
/* Instrument header size */
offset += READ_U32(offset);
for(int j = 0; j < instr->num_samples; ++j) {
/* Read sample header */
jar_xm_sample_t* sample = instr->samples + j;
sample->length = READ_U32(offset);
sample->loop_start = READ_U32(offset + 4);
sample->loop_length = READ_U32(offset + 8);
sample->loop_end = sample->loop_start + sample->loop_length;
sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f;
if (sample->volume > 1.0f) {sample->volume = 1.f;};
sample->finetune = (int8_t)READ_U8(offset + 13);
uint8_t flags = READ_U8(offset + 14);
switch (flags & 3) {
case 2:
case 3:
sample->loop_type = jar_xm_PING_PONG_LOOP;
case 1:
sample->loop_type = jar_xm_FORWARD_LOOP;
break;
default:
sample->loop_type = jar_xm_NO_LOOP;
break;
};
sample->bits = (flags & 0x10) ? 16 : 8;
sample->stereo = (flags & 0x20) ? 1 : 0;
sample->panning = (float)READ_U8(offset + 15) / 255.f;
sample->relative_note = (int8_t)READ_U8(offset + 16);
READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH);
sample->data = (float*)mempool;
if(sample->bits == 16) {
/* 16 bit sample */
mempool += sample->length * (sizeof(float) >> 1);
sample->loop_start >>= 1;
sample->loop_length >>= 1;
sample->loop_end >>= 1;
sample->length >>= 1;
} else {
/* 8 bit sample */
mempool += sample->length * sizeof(float);
}
// Adjust loop points to reflect half of the reported length (stereo)
if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) {
div_t lstart = div(READ_U32(offset + 4), 2);
sample->loop_start = lstart.quot;
div_t llength = div(READ_U32(offset + 8), 2);
sample->loop_length = llength.quot;
sample->loop_end = sample->loop_start + sample->loop_length;
};
offset += sample_header_size;
}
// Read all samples and convert them to float values
for(int j = 0; j < instr->num_samples; ++j) {
/* Read sample data */
jar_xm_sample_t* sample = instr->samples + j;
int length = sample->length;
if (sample->stereo) {
// Since it is stereo, we cut the sample in half (treated as single channel)
div_t result = div(sample->length, 2);
if(sample->bits == 16) {
int16_t v = 0;
for(int k = 0; k < length; ++k) {
if (k == result.quot) { v = 0;};
v = v + (int16_t)READ_U16(offset + (k << 1));
sample->data[k] = (float) v / 32768.f ;//* sign;
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
}
offset += sample->length << 1;
} else {
int8_t v = 0;
for(int k = 0; k < length; ++k) {
if (k == result.quot) { v = 0;};
v = v + (int8_t)READ_U8(offset + k);
sample->data[k] = (float)v / 128.f ;//* sign;
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
}
offset += sample->length;
};
sample->length = result.quot;
} else {
if(sample->bits == 16) {
int16_t v = 0;
for(int k = 0; k < length; ++k) {
v = v + (int16_t)READ_U16(offset + (k << 1));
sample->data[k] = (float) v / 32768.f ;//* sign;
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
}
offset += sample->length << 1;
} else {
int8_t v = 0;
for(int k = 0; k < length; ++k) {
v = v + (int8_t)READ_U8(offset + k);
sample->data[k] = (float)v / 128.f ;//* sign;
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
}
offset += sample->length;
}
}
};
};
return mempool;
};
//-------------------------------------------------------------------------------
//THE FOLLOWING IS FOR PLAYING
static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t);
static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*);
static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
static void jar_xm_tremolo(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
static void jar_xm_arpeggio(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
static void jar_xm_tone_portamento(jar_xm_context_t*, jar_xm_channel_context_t*);
static void jar_xm_pitch_slide(jar_xm_context_t*, jar_xm_channel_context_t*, float);
static void jar_xm_panning_slide(jar_xm_channel_context_t*, uint8_t);
static void jar_xm_volume_slide(jar_xm_channel_context_t*, uint8_t);
static float jar_xm_envelope_lerp(jar_xm_envelope_point_t*, jar_xm_envelope_point_t*, uint16_t);
static void jar_xm_envelope_tick(jar_xm_channel_context_t*, jar_xm_envelope_t*, uint16_t*, float*);
static void jar_xm_envelopes(jar_xm_channel_context_t*);
static float jar_xm_linear_period(float);
static float jar_xm_linear_frequency(float);
static float jar_xm_amiga_period(float);
static float jar_xm_amiga_frequency(float);
static float jar_xm_period(jar_xm_context_t*, float);
static float jar_xm_frequency(jar_xm_context_t*, float, float);
static void jar_xm_update_frequency(jar_xm_context_t*, jar_xm_channel_context_t*);
static void jar_xm_handle_note_and_instrument(jar_xm_context_t*, jar_xm_channel_context_t*, jar_xm_pattern_slot_t*);
static void jar_xm_trigger_note(jar_xm_context_t*, jar_xm_channel_context_t*, unsigned int flags);
static void jar_xm_cut_note(jar_xm_channel_context_t*);
static void jar_xm_key_off(jar_xm_channel_context_t*);
static void jar_xm_post_pattern_change(jar_xm_context_t*);
static void jar_xm_row(jar_xm_context_t*);
static void jar_xm_tick(jar_xm_context_t*);
static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int);
static void jar_xm_mixdown(jar_xm_context_t*, float*, float*);
#define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0)
#define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1)
#define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2)
// C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3
static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017, 961, 907, 856 };
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f };
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f };
#define jar_xm_CLAMP_UP1F(vol, limit) do { \
if((vol) > (limit)) (vol) = (limit); \
} while(0)
#define jar_xm_CLAMP_UP(vol) jar_xm_CLAMP_UP1F((vol), 1.f)
#define jar_xm_CLAMP_DOWN1F(vol, limit) do { \
if((vol) < (limit)) (vol) = (limit); \
} while(0)
#define jar_xm_CLAMP_DOWN(vol) jar_xm_CLAMP_DOWN1F((vol), .0f)
#define jar_xm_CLAMP2F(vol, up, down) do { \
if((vol) > (up)) (vol) = (up); \
else if((vol) < (down)) (vol) = (down); \
} while(0)
#define jar_xm_CLAMP(vol) jar_xm_CLAMP2F((vol), 1.f, .0f)
#define jar_xm_SLIDE_TOWARDS(val, goal, incr) do { \
if((val) > (goal)) { \
(val) -= (incr); \
jar_xm_CLAMP_DOWN1F((val), (goal)); \
} else if((val) < (goal)) { \
(val) += (incr); \
jar_xm_CLAMP_UP1F((val), (goal)); \
} \
} while(0)
#define jar_xm_LERP(u, v, t) ((u) + (t) * ((v) - (u)))
#define jar_xm_INVERSE_LERP(u, v, lerp) (((lerp) - (u)) / ((v) - (u)))
#define HAS_TONE_PORTAMENTO(s) ((s)->effect_type == 3 \
|| (s)->effect_type == 5 \
|| ((s)->volume_column >> 4) == 0xF)
#define HAS_ARPEGGIO(s) ((s)->effect_type == 0 \
&& (s)->effect_param != 0)
#define HAS_VIBRATO(s) ((s)->effect_type == 4 \
|| (s)->effect_param == 6 \
|| ((s)->volume_column >> 4) == 0xB)
#define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97)
#define NOTE_OFF 97
static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) {
static unsigned int next_rand = 24492;
step %= 0x40;
switch(waveform) {
case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */
return -sinf(2.f * 3.141592f * (float)step / (float)0x40);
case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */
return (float)(0x20 - step) / 0x20;
case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */
return (step >= 0x20) ? 1.f : -1.f;
case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */
next_rand = next_rand * 1103515245 + 12345;
return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f;
case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */
return (float)(step - 0x20) / 0x20;
default:
break;
}
return .0f;
}
static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return;
jar_xm_instrument_t* instr = ch->instrument;
float sweep = 1.f;
if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); }
unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2;
ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep;
jar_xm_update_frequency(ctx, ch);
}
static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
unsigned int step = pos * (param >> 4);
ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF;
jar_xm_update_frequency(ctx, ch);
}
static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
unsigned int step = pos * (param >> 4);
ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF;
}
static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) {
switch(tick % 3) {
case 0:
ch->arp_in_progress = false;
ch->arp_note_offset = 0;
break;
case 2:
ch->arp_in_progress = true;
ch->arp_note_offset = param >> 4;
break;
case 1:
ch->arp_in_progress = true;
ch->arp_note_offset = param & 0x0F;
break;
}
jar_xm_update_frequency(ctx, ch);
}
static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
/* 3xx called without a note, wait until we get an actual target note. */
if(ch->tone_portamento_target_period == 0.f) return; /* no value, exit */
if(ch->period != ch->tone_portamento_target_period) {
jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param);
jar_xm_update_frequency(ctx, ch);
}
}
static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) {
/* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by ear™. */
if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; }
ch->period += period_offset;
jar_xm_CLAMP_DOWN(ch->period);
/* XXX: upper bound of period ? */
jar_xm_update_frequency(ctx, ch);
}
static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;};
if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;};
};
static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;};
if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;};
};
static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) {
/* Linear interpolation between two envelope points */
if(pos <= a->frame) return a->value;
else if(pos >= b->frame) return b->value;
else {
float p = (float)(pos - a->frame) / (float)(b->frame - a->frame);
return a->value * (1 - p) + b->value * p;
}
}
static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) {
/* Loop if necessary */
if(ctx->current_table_index >= ctx->module.length) {
ctx->current_table_index = ctx->module.restart_position;
ctx->tempo =ctx->default_tempo; // reset to file default value
ctx->bpm = ctx->default_bpm; // reset to file default value
ctx->global_volume = ctx->default_global_volume; // reset to file default value
}
}
static float jar_xm_linear_period(float note) {
return 7680.f - note * 64.f;
}
static float jar_xm_linear_frequency(float period) {
return 8363.f * powf(2.f, (4608.f - period) / 768.f);
}
static float jar_xm_amiga_period(float note) {
unsigned int intnote = note;
uint8_t a = intnote % 12;
int8_t octave = note / 12.f - 2;
uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1];
if(octave > 0) {
p1 >>= octave;
p2 >>= octave;
} else if(octave < 0) {
p1 <<= -octave;
p2 <<= -octave;
}
return jar_xm_LERP(p1, p2, note - intnote);
}
static float jar_xm_amiga_frequency(float period) {
if(period == .0f) return .0f;
return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */
}
static float jar_xm_period(jar_xm_context_t* ctx, float note) {
switch(ctx->module.frequency_type) {
case jar_xm_LINEAR_FREQUENCIES:
return jar_xm_linear_period(note);
case jar_xm_AMIGA_FREQUENCIES:
return jar_xm_amiga_period(note);
}
return .0f;
}
static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) {
switch(ctx->module.frequency_type) {
case jar_xm_LINEAR_FREQUENCIES:
return jar_xm_linear_frequency(period - 64.f * note_offset);
case jar_xm_AMIGA_FREQUENCIES:
if(note_offset == 0) { return jar_xm_amiga_frequency(period); };
int8_t octave;
float note;
uint16_t p1, p2;
uint8_t a = octave = 0;
/* Find the octave of the current period */
if(period > amiga_frequencies[0]) {
--octave;
while(period > (amiga_frequencies[0] << -octave)) --octave;
} else if(period < amiga_frequencies[12]) {
++octave;
while(period < (amiga_frequencies[12] >> octave)) ++octave;
}
/* Find the smallest note closest to the current period */
for(uint8_t i = 0; i < 12; ++i) {
p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1];
if(octave > 0) {
p1 >>= octave;
p2 >>= octave;
} else if(octave < 0) {
p1 <<= (-octave);
p2 <<= (-octave);
}
if(p2 <= period && period <= p1) {
a = i;
break;
}
}
if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); }
note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period);
return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset));
}
return .0f;
}
static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : ( ch->vibrato_note_offset + ch->autovibrato_note_offset )) );
ch->step = ch->frequency / ctx->rate;
}
static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) {
jar_xm_module_t* mod = &(ctx->module);
if(s->instrument > 0) {
if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) { /* Tone portamento in effect */
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
} else if(s->instrument > ctx->module.num_instruments) { /* Invalid instrument, Cut current note */
jar_xm_cut_note(ch);
ch->instrument = NULL;
ch->sample = NULL;
} else {
ch->instrument = ctx->module.instruments + (s->instrument - 1);
if(s->note == 0 && ch->sample != NULL) { /* Ghost instrument, trigger note */
/* Sample position is kept, but envelopes are reset */
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
}
}
}
if(NOTE_IS_VALID(s->note)) {
// note value is s->note -1
jar_xm_instrument_t* instr = ch->instrument;
if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) {
/* Tone portamento in effect */
ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note);
} else if(instr == NULL || ch->instrument->num_samples == 0) { /* Issue on instrument */
jar_xm_cut_note(ch);
} else {
if(instr->sample_of_notes[s->note - 1] < instr->num_samples) {
if (mod->ramping) {
for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) {
jar_xm_next_of_sample(ctx, ch, i);
}
ch->frame_count = 0;
};
ch->sample = instr->samples + instr->sample_of_notes[s->note - 1];
ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
if(s->instrument > 0) {
jar_xm_trigger_note(ctx, ch, 0);
} else { /* Ghost note: keep old volume */
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME);
}
} else {
jar_xm_cut_note(ch);
}
}
} else if(s->note == NOTE_OFF) {
jar_xm_key_off(ch);
}
// Interpret Effect column
switch(s->effect_type) {
case 1: /* 1xx: Portamento up */
if(s->effect_param > 0) { ch->portamento_up_param = s->effect_param; }
break;
case 2: /* 2xx: Portamento down */
if(s->effect_param > 0) { ch->portamento_down_param = s->effect_param; }
break;
case 3: /* 3xx: Tone portamento */
if(s->effect_param > 0) { ch->tone_portamento_param = s->effect_param; }
break;
case 4: /* 4xy: Vibrato */
if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); } /* Set vibrato depth */
if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); } /* Set vibrato speed */
break;
case 5: /* 5xy: Tone portamento + Volume slide */
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; }
break;
case 6: /* 6xy: Vibrato + Volume slide */
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; }
break;
case 7: /* 7xy: Tremolo */
if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */
if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); } /* Set tremolo speed */
break;
case 8: /* 8xx: Set panning */
ch->panning = (float)s->effect_param / 255.f;
break;
case 9: /* 9xx: Sample offset */
if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) {
uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8);
switch (ch->sample->loop_type) {
case jar_xm_NO_LOOP:
if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */
ch->sample_position = -1;
} else {
ch->sample_position = final_offset;
}
break;
case jar_xm_FORWARD_LOOP:
if (final_offset >= ch->sample->loop_end) {
ch->sample_position -= ch->sample->loop_length;
} else if(final_offset >= ch->sample->length) {
ch->sample_position = ch->sample->loop_start;
} else {
ch->sample_position = final_offset;
}
break;
case jar_xm_PING_PONG_LOOP:
if(final_offset >= ch->sample->loop_end) {
ch->ping = false;
ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
} else if(final_offset >= ch->sample->length) {
ch->ping = false;
ch->sample_position -= ch->sample->length - 1;
} else {
ch->sample_position = final_offset;
};
break;
}
}
break;
case 0xA: /* Axy: Volume slide */
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; }
break;
case 0xB: /* Bxx: Position jump */
if(s->effect_param < ctx->module.length) {
ctx->position_jump = true;
ctx->jump_dest = s->effect_param;
}
break;
case 0xC: /* Cxx: Set volume */
ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40;
break;
case 0xD: /* Dxx: Pattern break */
/* Jump after playing this line */
ctx->pattern_break = true;
ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F);
break;
case 0xE: /* EXy: Extended command */
switch(s->effect_param >> 4) {
case 1: /* E1y: Fine portamento up */
if(s->effect_param & 0x0F) { ch->fine_portamento_up_param = s->effect_param & 0x0F; }
jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param);
break;
case 2: /* E2y: Fine portamento down */
if(s->effect_param & 0x0F) { ch->fine_portamento_down_param = s->effect_param & 0x0F; }
jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param);
break;
case 4: /* E4y: Set vibrato control */
ch->vibrato_waveform = s->effect_param & 3;
ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1);
break;
case 5: /* E5y: Set finetune */
if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) {
ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f;
ch->period = jar_xm_period(ctx, ch->note);
jar_xm_update_frequency(ctx, ch);
}
break;
case 6: /* E6y: Pattern loop */
if(s->effect_param & 0x0F) {
if((s->effect_param & 0x0F) == ch->pattern_loop_count) { /* Loop is over */
ch->pattern_loop_count = 0;
ctx->position_jump = false;
} else { /* Jump to the beginning of the loop */
ch->pattern_loop_count++;
ctx->position_jump = true;
ctx->jump_row = ch->pattern_loop_origin;
ctx->jump_dest = ctx->current_table_index;
}
} else {
ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */
ctx->jump_row = ch->pattern_loop_origin; /* Replicate FT2 E60 bug */
}
break;
case 7: /* E7y: Set tremolo control */
ch->tremolo_waveform = s->effect_param & 3;
ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1);
break;
case 0xA: /* EAy: Fine volume slide up */
if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; }
jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4);
break;
case 0xB: /* EBy: Fine volume slide down */
if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; }
jar_xm_volume_slide(ch, ch->fine_volume_slide_param);
break;
case 0xD: /* EDy: Note delay */
/* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x ≠ 0) does not. */
if(s->note == 0 && s->instrument == 0) {
unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME;
if(ch->current->effect_param & 0x0F) {
ch->note = ch->orig_note;
jar_xm_trigger_note(ctx, ch, flags);
} else {
jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION );
}
}
break;
case 0xE: /* EEy: Pattern delay */
ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo;
break;
default:
break;
}
break;
case 0xF: /* Fxx: Set tempo/BPM */
if(s->effect_param > 0) {
if(s->effect_param <= 0x1F) { // First 32 possible values adjust the ticks (goes into tempo)
ctx->tempo = s->effect_param;
} else { //32 and greater values adjust the BPM
ctx->bpm = s->effect_param;
}
}
break;
case 16: /* Gxx: Set global volume */
ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40;
break;
case 17: /* Hxy: Global volume slide */
if(s->effect_param > 0) { ch->global_volume_slide_param = s->effect_param; }
break;
case 21: /* Lxx: Set envelope position */
ch->volume_envelope_frame_count = s->effect_param;
ch->panning_envelope_frame_count = s->effect_param;
break;
case 25: /* Pxy: Panning slide */
if(s->effect_param > 0) { ch->panning_slide_param = s->effect_param; }
break;
case 27: /* Rxy: Multi retrig note */
if(s->effect_param > 0) {
if((s->effect_param >> 4) == 0) { /* Keep previous x value */
ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F);
} else {
ch->multi_retrig_param = s->effect_param;
}
}
break;
case 29: /* Txy: Tremor */
if(s->effect_param > 0) { ch->tremor_param = s->effect_param; } /* Tremor x and y params are not separately kept in memory, unlike Rxy */
break;
case 33: /* Xxy: Extra stuff */
switch(s->effect_param >> 4) {
case 1: /* X1y: Extra fine portamento up */
if(s->effect_param & 0x0F) { ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; }
jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param);
break;
case 2: /* X2y: Extra fine portamento down */
if(s->effect_param & 0x0F) { ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; }
jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param);
break;
default:
break;
}
break;
default:
break;
}
}
static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) {
if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) {
ch->sample_position = 0.f;
ch->ping = true;
};
if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) {
if(ch->sample != NULL) {
ch->volume = ch->sample->volume;
};
};
ch->panning = ch->sample->panning;
ch->sustained = true;
ch->fadeout_volume = ch->volume_envelope_volume = 1.0f;
ch->panning_envelope_panning = .5f;
ch->volume_envelope_frame_count = ch->panning_envelope_frame_count = 0;
ch->vibrato_note_offset = 0.f;
ch->tremolo_volume = 0.f;
ch->tremor_on = false;
ch->autovibrato_ticks = 0;
if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */
if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; }
if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) {
ch->period = jar_xm_period(ctx, ch->note);
jar_xm_update_frequency(ctx, ch);
}
ch->latest_trigger = ctx->generated_samples;
if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; }
if(ch->sample != NULL) { ch->sample->latest_trigger = ctx->generated_samples; }
}
static void jar_xm_cut_note(jar_xm_channel_context_t* ch) {
ch->volume = .0f; /* NB: this is not the same as Key Off */
// ch->curr_left = .0f;
// ch->curr_right = .0f;
}
static void jar_xm_key_off(jar_xm_channel_context_t* ch) {
ch->sustained = false; /* Key Off */
if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */
}
static void jar_xm_row(jar_xm_context_t* ctx) {
if(ctx->position_jump) {
ctx->current_table_index = ctx->jump_dest;
ctx->current_row = ctx->jump_row;
ctx->position_jump = false;
ctx->pattern_break = false;
ctx->jump_row = 0;
jar_xm_post_pattern_change(ctx);
} else if(ctx->pattern_break) {
ctx->current_table_index++;
ctx->current_row = ctx->jump_row;
ctx->pattern_break = false;
ctx->jump_row = 0;
jar_xm_post_pattern_change(ctx);
}
jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
bool in_a_loop = false;
/* Read notes information for all channels into temporary pattern slot */
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i;
jar_xm_channel_context_t* ch = ctx->channels + i;
ch->current = s;
// If there is no note delay effect (0xED) then...
if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) {
//********** Process the channel slot information **********
jar_xm_handle_note_and_instrument(ctx, ch, s);
} else {
// read the note delay information
ch->note_delay_param = s->effect_param & 0x0F;
}
if(!in_a_loop && ch->pattern_loop_count > 0) {
// clarify if in a loop or not
in_a_loop = true;
}
}
if(!in_a_loop) {
/* No E6y loop is in effect (or we are in the first pass) */
ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++);
}
/// Move to next row
ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */
if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) {
ctx->current_table_index++;
ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */
ctx->jump_row = 0;
jar_xm_post_pattern_change(ctx);
}
}
static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) {
if(env->num_points < 2) {
if(env->num_points == 1) {
*outval = (float)env->points[0].value / (float)0x40;
if(*outval > 1) { *outval = 1; };
} else {;
return;
};
} else {
if(env->loop_enabled) {
uint16_t loop_start = env->points[env->loop_start_point].frame;
uint16_t loop_end = env->points[env->loop_end_point].frame;
uint16_t loop_length = loop_end - loop_start;
if(*counter >= loop_end) { *counter -= loop_length; };
};
for(uint8_t j = 0; j < (env->num_points - 1); ++j) {
if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) {
*outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40;
break;
};
};
/* Make sure it is safe to increment frame count */
if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; };
};
};
static void jar_xm_envelopes(jar_xm_channel_context_t *ch) {
if(ch->instrument != NULL) {
if(ch->instrument->volume_envelope.enabled) {
if(!ch->sustained) {
ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f;
jar_xm_CLAMP_DOWN(ch->fadeout_volume);
};
jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume));
};
if(ch->instrument->panning_envelope.enabled) {
jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning));
};
};
};
static void jar_xm_tick(jar_xm_context_t* ctx) {
if(ctx->current_tick == 0) {
jar_xm_row(ctx); // We have processed all ticks and we run the row
}
jar_xm_module_t* mod = &(ctx->module);
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
jar_xm_channel_context_t* ch = ctx->channels + i;
jar_xm_envelopes(ch);
jar_xm_autovibrato(ctx, ch);
if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) {
ch->arp_in_progress = false;
ch->arp_note_offset = 0;
jar_xm_update_frequency(ctx, ch);
}
if(ch->vibrato_in_progress && !HAS_VIBRATO(ch->current)) {
ch->vibrato_in_progress = false;
ch->vibrato_note_offset = 0.f;
jar_xm_update_frequency(ctx, ch);
}
// Effects in volumne column mostly handled on a per tick basis
switch(ch->current->volume_column & 0xF0) {
case 0x50: // Checks for volume = 64
if(ch->current->volume_column != 0x50) break;
case 0x10: // Set volume 0-15
case 0x20: // Set volume 16-32
case 0x30: // Set volume 32-48
case 0x40: // Set volume 48-64
ch->volume = (float)(ch->current->volume_column - 16) / 64.0f;
break;
case 0x60: // Volume slide down
jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
break;
case 0x70: // Volume slide up
jar_xm_volume_slide(ch, ch->current->volume_column << 4);
break;
case 0x80: // Fine volume slide down
jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
break;
case 0x90: // Fine volume slide up
jar_xm_volume_slide(ch, ch->current->volume_column << 4);
break;
case 0xA0: // Set vibrato speed
ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4);
break;
case 0xB0: // Vibrato
ch->vibrato_in_progress = false;
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
break;
case 0xC0: // Set panning
if(!ctx->current_tick ) {
ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f;
}
break;
case 0xD0: // Panning slide left
jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F);
break;
case 0xE0: // Panning slide right
jar_xm_panning_slide(ch, ch->current->volume_column << 4);
break;
case 0xF0: // Tone portamento
if(!ctx->current_tick ) {
if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); }
};
jar_xm_tone_portamento(ctx, ch);
break;
default:
break;
}
// Only some standard effects handled on a per tick basis
// see jar_xm_handle_note_and_instrument for all effects handling on a per row basis
switch(ch->current->effect_type) {
case 0: /* 0xy: Arpeggio */
if(ch->current->effect_param > 0) {
char arp_offset = ctx->tempo % 3;
switch(arp_offset) {
case 2: /* 0 -> x -> 0 -> y -> x -> … */
if(ctx->current_tick == 1) {
ch->arp_in_progress = true;
ch->arp_note_offset = ch->current->effect_param >> 4;
jar_xm_update_frequency(ctx, ch);
break;
}
/* No break here, this is intended */
case 1: /* 0 -> 0 -> y -> x -> … */
if(ctx->current_tick == 0) {
ch->arp_in_progress = false;
ch->arp_note_offset = 0;
jar_xm_update_frequency(ctx, ch);
break;
}
/* No break here, this is intended */
case 0: /* 0 -> y -> x -> … */
jar_xm_arpeggio(ctx, ch, ch->current->effect_param, ctx->current_tick - arp_offset);
default:
break;
}
}
break;
case 1: /* 1xx: Portamento up */
if(ctx->current_tick == 0) break;
jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param);
break;
case 2: /* 2xx: Portamento down */
if(ctx->current_tick == 0) break;
jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param);
break;
case 3: /* 3xx: Tone portamento */
if(ctx->current_tick == 0) break;
jar_xm_tone_portamento(ctx, ch);
break;
case 4: /* 4xy: Vibrato */
if(ctx->current_tick == 0) break;
ch->vibrato_in_progress = true;
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
break;
case 5: /* 5xy: Tone portamento + Volume slide */
if(ctx->current_tick == 0) break;
jar_xm_tone_portamento(ctx, ch);
jar_xm_volume_slide(ch, ch->volume_slide_param);
break;
case 6: /* 6xy: Vibrato + Volume slide */
if(ctx->current_tick == 0) break;
ch->vibrato_in_progress = true;
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
jar_xm_volume_slide(ch, ch->volume_slide_param);
break;
case 7: /* 7xy: Tremolo */
if(ctx->current_tick == 0) break;
jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++);
break;
case 8: /* 8xy: Set panning */
break;
case 9: /* 9xy: Sample offset */
break;
case 0xA: /* Axy: Volume slide */
if(ctx->current_tick == 0) break;
jar_xm_volume_slide(ch, ch->volume_slide_param);
break;
case 0xE: /* EXy: Extended command */
switch(ch->current->effect_param >> 4) {
case 0x9: /* E9y: Retrigger note */
if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) {
if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) {
jar_xm_trigger_note(ctx, ch, 0);
jar_xm_envelopes(ch);
}
}
break;
case 0xC: /* ECy: Note cut */
if((ch->current->effect_param & 0x0F) == ctx->current_tick) {
jar_xm_cut_note(ch);
}
break;
case 0xD: /* EDy: Note delay */
if(ch->note_delay_param == ctx->current_tick) {
jar_xm_handle_note_and_instrument(ctx, ch, ch->current);
jar_xm_envelopes(ch);
}
break;
default:
break;
}
break;
case 16: /* Fxy: Set tempo/BPM */
break;
case 17: /* Hxy: Global volume slide */
if(ctx->current_tick == 0) break;
if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */
if(ch->global_volume_slide_param & 0xF0) { /* Global slide up */
float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40;
ctx->global_volume += f;
jar_xm_CLAMP_UP(ctx->global_volume);
} else { /* Global slide down */
float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40;
ctx->global_volume -= f;
jar_xm_CLAMP_DOWN(ctx->global_volume);
};
break;
case 20: /* Kxx: Key off */
if(ctx->current_tick == ch->current->effect_param) { jar_xm_key_off(ch); };
break;
case 21: /* Lxx: Set envelope position */
break;
case 25: /* Pxy: Panning slide */
if(ctx->current_tick == 0) break;
jar_xm_panning_slide(ch, ch->panning_slide_param);
break;
case 27: /* Rxy: Multi retrig note */
if(ctx->current_tick == 0) break;
if(((ch->multi_retrig_param) & 0x0F) == 0) break;
if((ctx->current_tick % (ch->multi_retrig_param & 0x0F)) == 0) {
float v = ch->volume * multi_retrig_multiply[ch->multi_retrig_param >> 4]
+ multi_retrig_add[ch->multi_retrig_param >> 4];
jar_xm_CLAMP(v);
jar_xm_trigger_note(ctx, ch, 0);
ch->volume = v;
};
break;
case 29: /* Txy: Tremor */
if(ctx->current_tick == 0) break;
ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4) );
break;
default:
break;
};
float panning, volume;
panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f;
if(ch->tremor_on) {
volume = .0f;
} else {
volume = ch->volume + ch->tremolo_volume;
jar_xm_CLAMP(volume);
volume *= ch->fadeout_volume * ch->volume_envelope_volume;
};
if (mod->ramping) {
ch->target_panning = panning;
ch->target_volume = volume;
} else {
ch->actual_panning = panning;
ch->actual_volume = volume;
};
};
ctx->current_tick++; // ok so we understand that ticks increment within the row
if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) {
// This means it reached the end of the row and we reset
ctx->current_tick = 0;
ctx->extra_ticks = 0;
};
// Number of ticks / second = BPM * 0.4
ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f);
};
static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) {
jar_xm_module_t* mod = &(ctx->module);
// ch->curr_left = 0.f;
// ch->curr_right = 0.f;
if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) {
ch->curr_left = 0.f;
ch->curr_right = 0.f;
if (mod->ramping) {
if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
if (previous > -1) {
ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
} else {
ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
};
};
};
return;
};
if(ch->sample->length == 0) {
return;
};
float t = 0.f;
uint32_t b = 0;
if(mod->linear_interpolation) {
b = ch->sample_position + 1;
t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */
};
float u_left, u_right;
u_left = ch->sample->data[(uint32_t)ch->sample_position];
if (ch->sample->stereo) {
u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length];
} else {
u_right = u_left;
};
float v_left = 0.f, v_right = 0.f;
switch(ch->sample->loop_type) {
case jar_xm_NO_LOOP:
if(mod->linear_interpolation) {
v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f;
if (ch->sample->stereo) {
v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f;
} else {
v_right = v_left;
};
};
ch->sample_position += ch->step;
if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample
break;
case jar_xm_FORWARD_LOOP:
if(mod->linear_interpolation) {
v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ];
if (ch->sample->stereo) {
v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length];
} else {
v_right = v_left;
};
};
ch->sample_position += ch->step;
if (ch->sample_position >= ch->sample->loop_end) {
ch->sample_position -= ch->sample->loop_length;
};
if(ch->sample_position >= ch->sample->length) {
ch->sample_position = ch->sample->loop_start;
};
break;
case jar_xm_PING_PONG_LOOP:
if(ch->ping) {
if(mod->linear_interpolation) {
v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b];
if (ch->sample->stereo) {
v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length];
} else {
v_right = v_left;
};
};
ch->sample_position += ch->step;
if(ch->sample_position >= ch->sample->loop_end) {
ch->ping = false;
ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
};
if(ch->sample_position >= ch->sample->length) {
ch->ping = false;
ch->sample_position -= ch->sample->length - 1;
};
} else {
if(mod->linear_interpolation) {
v_left = u_left;
v_right = u_right;
u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2];
if (ch->sample->stereo) {
u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2];
} else {
u_right = u_left;
};
};
ch->sample_position -= ch->step;
if(ch->sample_position <= ch->sample->loop_start) {
ch->ping = true;
ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position;
};
if (ch->sample_position <= .0f) {
ch->ping = true;
ch->sample_position = .0f;
};
};
break;
default:
v_left = .0f;
v_right = .0f;
break;
};
float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left;
float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right;
if (mod->ramping) {
if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
/* Smoothly transition between old and new sample. */
if (previous > -1) {
ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
} else {
ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
};
};
};
if (previous > -1) {
ch->end_of_previous_sample_left[previous] = endval_left;
ch->end_of_previous_sample_right[previous] = endval_right;
} else {
ch->curr_left = endval_left;
ch->curr_right = endval_right;
};
};
// gather all channel audio into stereo float
static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) {
jar_xm_module_t* mod = &(ctx->module);
if(ctx->remaining_samples_in_tick <= 0) {
jar_xm_tick(ctx);
};
ctx->remaining_samples_in_tick--;
*left = 0.f;
*right = 0.f;
if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; }
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
jar_xm_channel_context_t* ch = ctx->channels + i;
if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) {
jar_xm_next_of_sample(ctx, ch, -1);
if(!ch->muted && !ch->instrument->muted) {
*left += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning);
*right += ch->curr_right * ch->actual_volume * ch->actual_panning;
};
if (mod->ramping) {
ch->frame_count++;
jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp);
jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp);
};
};
};
if (ctx->global_volume != 1.0f) {
*left *= ctx->global_volume;
*right *= ctx->global_volume;
};
// experimental
// float counter = (float)ctx->generated_samples * 0.0001f
// *left = tan(&left + sin(counter));
// *right = tan(&right + cos(counter));
// apply brick wall limiter when audio goes beyond bounderies
if(*left < -1.0) {*left = -1.0;} else if(*left > 1.0) {*left = 1.0;};
if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;};
};
void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) {
if(ctx && output) {
ctx->generated_samples += numsamples;
for(size_t i = 0; i < numsamples; i++) {
jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1));
};
};
};
uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) {
uint64_t total = 0;
uint8_t currentLoopCount = jar_xm_get_loop_count(ctx);
jar_xm_set_max_loop_count(ctx, 0);
while(jar_xm_get_loop_count(ctx) == currentLoopCount) {
total += ctx->remaining_samples_in_tick;
ctx->remaining_samples_in_tick = 0;
jar_xm_tick(ctx);
}
ctx->loop_count = currentLoopCount;
return total;
}
//--------------------------------------------
//FILE LOADER - TODO - NEEDS TO BE CLEANED UP
//--------------------------------------------
#undef DEBUG
#define DEBUG(...) do { \
fprintf(stderr, __VA_ARGS__); \
fflush(stderr); \
} while(0)
#define DEBUG_ERR(...) do { \
fprintf(stderr, __VA_ARGS__); \
fflush(stderr); \
} while(0)
#define FATAL(...) do { \
fprintf(stderr, __VA_ARGS__); \
fflush(stderr); \
exit(1); \
} while(0)
#define FATAL_ERR(...) do { \
fprintf(stderr, __VA_ARGS__); \
fflush(stderr); \
exit(1); \
} while(0)
int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename) {
FILE* xmf;
int size;
int ret;
xmf = fopen(filename, "rb");
if(xmf == NULL) {
DEBUG_ERR("Could not open input file");
*ctx = NULL;
return 3;
}
fseek(xmf, 0, SEEK_END);
size = ftell(xmf);
rewind(xmf);
if(size == -1) {
fclose(xmf);
DEBUG_ERR("fseek() failed");
*ctx = NULL;
return 4;
}
char* data = JARXM_MALLOC(size + 1);
if(!data || fread(data, 1, size, xmf) < size) {
fclose(xmf);
DEBUG_ERR(data ? "fread() failed" : "JARXM_MALLOC() failed");
JARXM_FREE(data);
*ctx = NULL;
return 5;
}
fclose(xmf);
ret = jar_xm_create_context_safe(ctx, data, size, rate);
JARXM_FREE(data);
switch(ret) {
case 0:
break;
case 1: DEBUG("could not create context: module is not sane\n");
*ctx = NULL;
return 1;
break;
case 2: FATAL("could not create context: malloc failed\n");
return 2;
break;
default: FATAL("could not create context: unknown error\n");
return 6;
break;
}
return 0;
}
// not part of the original library
void jar_xm_reset(jar_xm_context_t* ctx) {
for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) {
jar_xm_cut_note(&ctx->channels[i]);
}
ctx->generated_samples = 0;
ctx->current_row = 0;
ctx->current_table_index = 0;
ctx->current_tick = 0;
ctx->tempo =ctx->default_tempo; // reset to file default value
ctx->bpm = ctx->default_bpm; // reset to file default value
ctx->global_volume = ctx->default_global_volume; // reset to file default value
}
void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) {
if (ctx->module.linear_interpolation) {
ctx->module.linear_interpolation = 0;
} else {
ctx->module.linear_interpolation = 1;
}
}
void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) {
for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) {
jar_xm_cut_note(&ctx->channels[i]);
}
ctx->current_row = 0;
ctx->current_tick = 0;
if(table_ptr > 0 && table_ptr < ctx->module.length) {
ctx->current_table_index = table_ptr;
ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track
} else {
ctx->current_table_index = 0;
ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track
ctx->tempo =ctx->default_tempo; // reset to file default value
ctx->bpm = ctx->default_bpm; // reset to file default value
ctx->global_volume = ctx->default_global_volume; // reset to file default value
};
}
// TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... )
const char* xm_note_chr(int number) {
if (number == NOTE_OFF) {
return "==";
};
number = number % 12;
switch(number) {
case 1: return "C-";
case 2: return "C#";
case 3: return "D-";
case 4: return "D#";
case 5: return "E-";
case 6: return "F-";
case 7: return "F#";
case 8: return "G-";
case 9: return "G#";
case 10: return "A-";
case 11: return "A#";
case 12: return "B-";
};
return "??";
};
const char* xm_octave_chr(int number) {
if (number == NOTE_OFF) {
return "=";
};
int number2 = number - number % 12;
int result = floor(number2 / 12) + 1;
switch(result) {
case 1: return "1";
case 2: return "2";
case 3: return "3";
case 4: return "4";
case 5: return "5";
case 6: return "6";
case 7: return "7";
case 8: return "8";
default: return "?"; /* UNKNOWN */
};
};
// TRANSLATE NOTE EFFECT CODE INTO USER VALUE
const char* xm_effect_chr(int fx) {
switch(fx) {
case 0: return "0"; /* ZERO = NO EFFECT */
case 1: return "1"; /* 1xx: Portamento up */
case 2: return "2"; /* 2xx: Portamento down */
case 3: return "3"; /* 3xx: Tone portamento */
case 4: return "4"; /* 4xy: Vibrato */
case 5: return "5"; /* 5xy: Tone portamento + Volume slide */
case 6: return "6"; /* 6xy: Vibrato + Volume slide */
case 7: return "7"; /* 7xy: Tremolo */
case 8: return "8"; /* 8xx: Set panning */
case 9: return "9"; /* 9xx: Sample offset */
case 0xA: return "A";/* Axy: Volume slide */
case 0xB: return "B";/* Bxx: Position jump */
case 0xC: return "C";/* Cxx: Set volume */
case 0xD: return "D";/* Dxx: Pattern break */
case 0xE: return "E";/* EXy: Extended command */
case 0xF: return "F";/* Fxx: Set tempo/BPM */
case 16: return "G"; /* Gxx: Set global volume */
case 17: return "H"; /* Hxy: Global volume slide */
case 21: return "L"; /* Lxx: Set envelope position */
case 25: return "P"; /* Pxy: Panning slide */
case 27: return "R"; /* Rxy: Multi retrig note */
case 29: return "T"; /* Txy: Tremor */
case 33: return "X"; /* Xxy: Extra stuff */
default: return "?"; /* UNKNOWN */
};
}
#ifdef JAR_XM_RAYLIB
#include "raylib.h" // Need RayLib API calls for the DEBUG display
void jar_xm_debug(jar_xm_context_t *ctx) {
int size=40;
int x = 0, y = 0;
// DEBUG VARIABLES
y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index), x, y, size, WHITE);
y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]), x, y, size, WHITE);
y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump), x, y, size, WHITE);
y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest), x, y, size, WHITE);
y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break), x, y, size, WHITE);
y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row), x, y, size, WHITE);
y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row), x, y, size, WHITE);
y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count), x, y, size, WHITE);
y += size; DrawText(TextFormat("LCT = %i", ctx->loop_count), x, y, size, WHITE);
y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count), x, y, size, WHITE);
x = size * 12; y = 0;
y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick), x, y, size, WHITE);
y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks), x, y, size, WHITE);
y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo), x, y, size, ORANGE);
y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE);
y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples), x, y, size, WHITE);
y += size * 7;
x = 0;
size=16;
// TIMELINE OF MODULE
for (int i=0; i < ctx->module.length; i++) {
if (i == ctx->jump_dest) {
if (ctx->position_jump) {
DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD);
} else {
DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN);
};
};
if (i == ctx->current_table_index) {
// DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE);
DrawRectangle(i * size * 2, y, size * 2, size, RED);
DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW);
} else {
DrawRectangle(i * size * 2, y, size * 2, size, ORANGE);
};
DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE);
};
y += size;
jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
/* DISPLAY CURRENTLY PLAYING PATTERN */
x += 2 * size;
for(uint8_t i = 0; i < ctx->module.num_channels; i++) {
DrawRectangle(x, y, 8 * size, size, PURPLE);
DrawText("N", x, y, size, YELLOW);
DrawText("I", x + size * 2, y, size, YELLOW);
DrawText("V", x + size * 4, y, size, YELLOW);
DrawText("FX", x + size * 6, y, size, YELLOW);
x += 9 * size;
};
x += size;
for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) {
y += size;
x = 0;
if (j >=0 && j < (cur->num_rows)) {
DrawRectangle(x, y, size * 2, size, BROWN);
DrawText(TextFormat("%02X",j), x, y, size, WHITE);
x += 2 * size;
for(uint8_t i = 0; i < ctx->module.num_channels; i++) {
if (j==(ctx->current_row)) {
DrawRectangle(x, y, 8 * size, size, DARKGREEN);
} else {
DrawRectangle(x, y, 8 * size, size, DARKGRAY);
};
jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i;
// jar_xm_channel_context_t *ch = ctx->channels + i;
if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);};
if (s->instrument > 0) {
DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE);
if (s->volume_column == 0) {
DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW);
};
} else {
DrawText("..", x + size * 2, y, size, GRAY);
if (s->volume_column == 0) {
DrawText("..", x + size * 4, y, size, GRAY);
};
};
if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);};
if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);};
x += 9 * size;
};
};
};
}
#endif // RayLib extension
#endif//end of JAR_XM_IMPLEMENTATION
//-------------------------------------------------------------------------------
#endif//end of INCLUDE_JAR_XM_H
|