diff options
Diffstat (limited to 'raylib/src/external/jar_xm.h')
-rw-r--r-- | raylib/src/external/jar_xm.h | 2471 |
1 files changed, 2471 insertions, 0 deletions
diff --git a/raylib/src/external/jar_xm.h b/raylib/src/external/jar_xm.h new file mode 100644 index 0000000..4a1bfbf --- /dev/null +++ b/raylib/src/external/jar_xm.h @@ -0,0 +1,2471 @@ +// jar_xm.h +// +// ORIGINAL LICENSE - FOR LIBXM: +// +// Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com> +// Contributor: Dan Spencer <dan@atomicpotato.net> +// Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com> +// This program is free software. It comes without any warranty, to the +// extent permitted by applicable law. You can redistribute it and/or +// modify it under the terms of the Do What The Fuck You Want To Public +// License, Version 2, as published by Sam Hocevar. See +// http://sam.zoy.org/wtfpl/COPYING for more details. +// +// HISTORY: +// v0.1.0 2016-02-22 jar_xm.h - development by Joshua Reisenauer, MAR 2016 +// v0.2.1 2021-03-07 m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling) +// v0.2.2 2021-03-09 m4ntr0n1c: Add complete debug solution (raylib.h must be included) +// v0.2.3 2021-03-11 m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop +// v0.2.4 2021-03-17 m4ntr0n1c: Sanitize code for readability +// v0.2.5 2021-03-22 m4ntr0n1c: Minor adjustments +// v0.2.6 2021-04-01 m4ntr0n1c: Minor fixes and optimisation +// v0.3.0 2021-04-03 m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code +// v0.3.1 2021-04-04 m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments +// +// USAGE: +// +// In ONE source file, put: +// +// #define JAR_XM_IMPLEMENTATION +// #include "jar_xm.h" +// +// Other source files should just include jar_xm.h +// +// SAMPLE CODE: +// +// jar_xm_context_t *musicptr; +// float musicBuffer[48000 / 60]; +// int intro_load(void) +// { +// jar_xm_create_context_from_file(&musicptr, 48000, "Song.XM"); +// return 1; +// } +// int intro_unload(void) +// { +// jar_xm_free_context(musicptr); +// return 1; +// } +// int intro_tick(long counter) +// { +// jar_xm_generate_samples(musicptr, musicBuffer, (48000 / 60) / 2); +// if(IsKeyDown(KEY_ENTER)) +// return 1; +// return 0; +// } +// +#ifndef INCLUDE_JAR_XM_H +#define INCLUDE_JAR_XM_H + +#include <stdint.h> + +#define JAR_XM_DEBUG 0 +#define JAR_XM_DEFENSIVE 1 +//#define JAR_XM_RAYLIB 0 // set to 0 to disable the RayLib visualizer extension + +// Allow custom memory allocators +#ifndef JARXM_MALLOC + #define JARXM_MALLOC(sz) malloc(sz) +#endif +#ifndef JARXM_FREE + #define JARXM_FREE(p) free(p) +#endif + +//------------------------------------------------------------------------------- +struct jar_xm_context_s; +typedef struct jar_xm_context_s jar_xm_context_t; + +#ifdef __cplusplus +extern "C" { +#endif + +//** Create a XM context. +// * @param moddata the contents of the module +// * @param rate play rate in Hz, recommended value of 48000 +// * @returns 0 on success +// * @returns 1 if module data is not sane +// * @returns 2 if memory allocation failed +// * @returns 3 unable to open input file +// * @returns 4 fseek() failed +// * @returns 5 fread() failed +// * @returns 6 unkown error +// * @deprecated This function is unsafe! +// * @see jar_xm_create_context_safe() +int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename); + +//** Create a XM context. +// * @param moddata the contents of the module +// * @param rate play rate in Hz, recommended value of 48000 +// * @returns 0 on success +// * @returns 1 if module data is not sane +// * @returns 2 if memory allocation failed +// * @deprecated This function is unsafe! +// * @see jar_xm_create_context_safe() +int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate); + +//** Create a XM context. +// * @param moddata the contents of the module +// * @param moddata_length the length of the contents of the module, in bytes +// * @param rate play rate in Hz, recommended value of 48000 +// * @returns 0 on success +// * @returns 1 if module data is not sane +// * @returns 2 if memory allocation failed +int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate); + +//** Free a XM context created by jar_xm_create_context(). */ +void jar_xm_free_context(jar_xm_context_t* ctx); + +//** Play the module and put the sound samples in an output buffer. +// * @param output buffer of 2*numsamples elements (A left and right value for each sample) +// * @param numsamples number of samples to generate +void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples); + +//** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer. +// * @param output buffer of 2*numsamples elements (A left and right value for each sample) +// * @param numsamples number of samples to generate +void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) { + float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); + jar_xm_generate_samples(ctx, musicBuffer, numsamples); + + if(output){ + for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int + } + JARXM_FREE(musicBuffer); +} + +//** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer. +// * @param output buffer of 2*numsamples elements (A left and right value for each sample) +// * @param numsamples number of samples to generate +void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) { + float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); + jar_xm_generate_samples(ctx, musicBuffer, numsamples); + + if(output){ + for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit + } + JARXM_FREE(musicBuffer); +} + +//** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count(). +// * @param loopcnt maximum number of loops. Use 0 to loop indefinitely. +void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt); + +//** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc. +uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx); + +//** Mute or unmute a channel. +// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). +// * @return whether the channel was muted. +bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool); + +//** Mute or unmute an instrument. +// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). +// * @return whether the instrument was muted. +bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool); + +//** Get the module name as a NUL-terminated string. +const char* jar_xm_get_module_name(jar_xm_context_t* ctx); + +//** Get the tracker name as a NUL-terminated string. +const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx); + +//** Get the number of channels. +uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx); + +//** Get the module length (in patterns). +uint16_t jar_xm_get_module_length(jar_xm_context_t*); + +//** Get the number of patterns. +uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx); + +//** Get the number of rows of a pattern. +// * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1. +uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t); + +//** Get the number of instruments. +uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx); + +//** Get the number of samples of an instrument. +// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). +uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t); + +//** Get the current module speed. +// * @param bpm will receive the current BPM +// * @param tempo will receive the current tempo (ticks per line) +void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo); + +//** Get the current position in the module being played. +// * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table) +// * @param pattern if not NULL, will receive the current pattern number +// * @param row if not NULL, will receive the current row +// * @param samples if not NULL, will receive the total number of +// * generated samples (divide by sample rate to get seconds of generated audio) +void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples); + +//** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel. +// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). +uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t); + +//** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel. +// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). +// * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1. +uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample); + +//** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel. +// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). +uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t); + +//** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples. +// * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass. +// * @note This function is very slow and should only be run once, if at all. +uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx); + +#ifdef __cplusplus +} +#endif +//------------------------------------------------------------------------------- + +#ifdef JAR_XM_IMPLEMENTATION + +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <limits.h> +#include <string.h> + +#if JAR_XM_DEBUG //JAR_XM_DEBUG defined as 0 +#include <stdio.h> +#define DEBUG(fmt, ...) do { \ + fprintf(stderr, "%s(): " fmt "\n", __func__, __VA_ARGS__); \ + fflush(stderr); \ + } while(0) +#else +#define DEBUG(...) +#endif + +#if jar_xm_BIG_ENDIAN +#error "Big endian platforms are not yet supported, sorry" +/* Make sure the compiler stops, even if #error is ignored */ +extern int __fail[-1]; +#endif + +/* ----- XM constants ----- */ +#define SAMPLE_NAME_LENGTH 22 +#define INSTRUMENT_NAME_LENGTH 22 +#define MODULE_NAME_LENGTH 20 +#define TRACKER_NAME_LENGTH 20 +#define PATTERN_ORDER_TABLE_LENGTH 256 +#define NUM_NOTES 96 // from 1 to 96, where 1 = C-0 +#define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max +#define MAX_NUM_ROWS 256 + +#define jar_xm_SAMPLE_RAMPING_POINTS 8 + +/* ----- Data types ----- */ + +enum jar_xm_waveform_type_e { + jar_xm_SINE_WAVEFORM = 0, + jar_xm_RAMP_DOWN_WAVEFORM = 1, + jar_xm_SQUARE_WAVEFORM = 2, + jar_xm_RANDOM_WAVEFORM = 3, + jar_xm_RAMP_UP_WAVEFORM = 4, +}; +typedef enum jar_xm_waveform_type_e jar_xm_waveform_type_t; + +enum jar_xm_loop_type_e { + jar_xm_NO_LOOP, + jar_xm_FORWARD_LOOP, + jar_xm_PING_PONG_LOOP, +}; +typedef enum jar_xm_loop_type_e jar_xm_loop_type_t; + +enum jar_xm_frequency_type_e { + jar_xm_LINEAR_FREQUENCIES, + jar_xm_AMIGA_FREQUENCIES, +}; +typedef enum jar_xm_frequency_type_e jar_xm_frequency_type_t; + +struct jar_xm_envelope_point_s { + uint16_t frame; + uint16_t value; +}; +typedef struct jar_xm_envelope_point_s jar_xm_envelope_point_t; + +struct jar_xm_envelope_s { + jar_xm_envelope_point_t points[NUM_ENVELOPE_POINTS]; + uint8_t num_points; + uint8_t sustain_point; + uint8_t loop_start_point; + uint8_t loop_end_point; + bool enabled; + bool sustain_enabled; + bool loop_enabled; +}; +typedef struct jar_xm_envelope_s jar_xm_envelope_t; + +struct jar_xm_sample_s { + char name[SAMPLE_NAME_LENGTH + 1]; + int8_t bits; /* Either 8 or 16 */ + int8_t stereo; + uint32_t length; + uint32_t loop_start; + uint32_t loop_length; + uint32_t loop_end; + float volume; + int8_t finetune; + jar_xm_loop_type_t loop_type; + float panning; + int8_t relative_note; + uint64_t latest_trigger; + + float* data; + }; + typedef struct jar_xm_sample_s jar_xm_sample_t; + + struct jar_xm_instrument_s { + char name[INSTRUMENT_NAME_LENGTH + 1]; + uint16_t num_samples; + uint8_t sample_of_notes[NUM_NOTES]; + jar_xm_envelope_t volume_envelope; + jar_xm_envelope_t panning_envelope; + jar_xm_waveform_type_t vibrato_type; + uint8_t vibrato_sweep; + uint8_t vibrato_depth; + uint8_t vibrato_rate; + uint16_t volume_fadeout; + uint64_t latest_trigger; + bool muted; + + jar_xm_sample_t* samples; + }; + typedef struct jar_xm_instrument_s jar_xm_instrument_t; + + struct jar_xm_pattern_slot_s { + uint8_t note; /* 1-96, 97 = Key Off note */ + uint8_t instrument; /* 1-128 */ + uint8_t volume_column; + uint8_t effect_type; + uint8_t effect_param; + }; + typedef struct jar_xm_pattern_slot_s jar_xm_pattern_slot_t; + + struct jar_xm_pattern_s { + uint16_t num_rows; + jar_xm_pattern_slot_t* slots; /* Array of size num_rows * num_channels */ + }; + typedef struct jar_xm_pattern_s jar_xm_pattern_t; + + struct jar_xm_module_s { + char name[MODULE_NAME_LENGTH + 1]; + char trackername[TRACKER_NAME_LENGTH + 1]; + uint16_t length; + uint16_t restart_position; + uint16_t num_channels; + uint16_t num_patterns; + uint16_t num_instruments; + uint16_t linear_interpolation; + uint16_t ramping; + jar_xm_frequency_type_t frequency_type; + uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH]; + + jar_xm_pattern_t* patterns; + jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */ + }; + typedef struct jar_xm_module_s jar_xm_module_t; + + struct jar_xm_channel_context_s { + float note; + float orig_note; /* The original note before effect modifications, as read in the pattern. */ + jar_xm_instrument_t* instrument; /* Could be NULL */ + jar_xm_sample_t* sample; /* Could be NULL */ + jar_xm_pattern_slot_t* current; + + float sample_position; + float period; + float frequency; + float step; + bool ping; /* For ping-pong samples: true is -->, false is <-- */ + + float volume; /* Ideally between 0 (muted) and 1 (loudest) */ + float panning; /* Between 0 (left) and 1 (right); 0.5 is centered */ + + uint16_t autovibrato_ticks; + + bool sustained; + float fadeout_volume; + float volume_envelope_volume; + float panning_envelope_panning; + uint16_t volume_envelope_frame_count; + uint16_t panning_envelope_frame_count; + + float autovibrato_note_offset; + + bool arp_in_progress; + uint8_t arp_note_offset; + uint8_t volume_slide_param; + uint8_t fine_volume_slide_param; + uint8_t global_volume_slide_param; + uint8_t panning_slide_param; + uint8_t portamento_up_param; + uint8_t portamento_down_param; + uint8_t fine_portamento_up_param; + uint8_t fine_portamento_down_param; + uint8_t extra_fine_portamento_up_param; + uint8_t extra_fine_portamento_down_param; + uint8_t tone_portamento_param; + float tone_portamento_target_period; + uint8_t multi_retrig_param; + uint8_t note_delay_param; + uint8_t pattern_loop_origin; /* Where to restart a E6y loop */ + uint8_t pattern_loop_count; /* How many loop passes have been done */ + bool vibrato_in_progress; + jar_xm_waveform_type_t vibrato_waveform; + bool vibrato_waveform_retrigger; /* True if a new note retriggers the waveform */ + uint8_t vibrato_param; + uint16_t vibrato_ticks; /* Position in the waveform */ + float vibrato_note_offset; + jar_xm_waveform_type_t tremolo_waveform; + bool tremolo_waveform_retrigger; + uint8_t tremolo_param; + uint8_t tremolo_ticks; + float tremolo_volume; + uint8_t tremor_param; + bool tremor_on; + + uint64_t latest_trigger; + bool muted; + + //* These values are updated at the end of each tick, to save a couple of float operations on every generated sample. + float target_panning; + float target_volume; + + unsigned long frame_count; + float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS]; + float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS]; + float curr_left; + float curr_right; + + float actual_panning; + float actual_volume; + }; + typedef struct jar_xm_channel_context_s jar_xm_channel_context_t; + + struct jar_xm_context_s { + void* allocated_memory; + jar_xm_module_t module; + uint32_t rate; + + uint16_t default_tempo; // Number of ticks per row + uint16_t default_bpm; + float default_global_volume; + + uint16_t tempo; // Number of ticks per row + uint16_t bpm; + float global_volume; + + float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */ + float panning_ramp; /* Same for panning. */ + + uint8_t current_table_index; + uint8_t current_row; + uint16_t current_tick; /* Can go below 255, with high tempo and a pattern delay */ + float remaining_samples_in_tick; + uint64_t generated_samples; + + bool position_jump; + bool pattern_break; + uint8_t jump_dest; + uint8_t jump_row; + + uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */ + + uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */ + uint8_t loop_count; + uint8_t max_loop_count; + + jar_xm_channel_context_t* channels; +}; + +#if JAR_XM_DEFENSIVE + +//** Check the module data for errors/inconsistencies. +// * @returns 0 if everything looks OK. Module should be safe to load. +int jar_xm_check_sanity_preload(const char*, size_t); + +//** Check a loaded module for errors/inconsistencies. +// * @returns 0 if everything looks OK. +int jar_xm_check_sanity_postload(jar_xm_context_t*); + +#endif + +//** Get the number of bytes needed to store the module data in a dynamically allocated blank context. +// * Things that are dynamically allocated: +// * - sample data +// * - sample structures in instruments +// * - pattern data +// * - row loop count arrays +// * - pattern structures in module +// * - instrument structures in module +// * - channel contexts +// * - context structure itself +// * @returns 0 if everything looks OK. +size_t jar_xm_get_memory_needed_for_context(const char*, size_t); + +//** Populate the context from module data. +// * @returns pointer to the memory pool +char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*); + +int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) { + return jar_xm_create_context_safe(ctxp, moddata, SIZE_MAX, rate); +} + +#define ALIGN(x, b) (((x) + ((b) - 1)) & ~((b) - 1)) +#define ALIGN_PTR(x, b) (void*)(((uintptr_t)(x) + ((b) - 1)) & ~((b) - 1)) +int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, size_t moddata_length, uint32_t rate) { +#if JAR_XM_DEFENSIVE + int ret; +#endif + size_t bytes_needed; + char* mempool; + jar_xm_context_t* ctx; + +#if JAR_XM_DEFENSIVE + if((ret = jar_xm_check_sanity_preload(moddata, moddata_length))) { + DEBUG("jar_xm_check_sanity_preload() returned %i, module is not safe to load", ret); + return 1; + } +#endif + + bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length); + mempool = JARXM_MALLOC(bytes_needed); + if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */ + DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool); + return 2; + } + + /* Initialize most of the fields to 0, 0.f, NULL or false depending on type */ + memset(mempool, 0, bytes_needed); + + ctx = (*ctxp = (jar_xm_context_t *)mempool); + ctx->allocated_memory = mempool; /* Keep original pointer for JARXM_FREE() */ + mempool += sizeof(jar_xm_context_t); + + ctx->rate = rate; + mempool = jar_xm_load_module(ctx, moddata, moddata_length, mempool); + mempool = ALIGN_PTR(mempool, 16); + + ctx->channels = (jar_xm_channel_context_t*)mempool; + mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t); + mempool = ALIGN_PTR(mempool, 16); + + ctx->default_global_volume = 1.f; + ctx->global_volume = ctx->default_global_volume; + + ctx->volume_ramp = (1.f / 128.f); + ctx->panning_ramp = (1.f / 128.f); + + for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { + jar_xm_channel_context_t *ch = ctx->channels + i; + ch->ping = true; + ch->vibrato_waveform = jar_xm_SINE_WAVEFORM; + ch->vibrato_waveform_retrigger = true; + ch->tremolo_waveform = jar_xm_SINE_WAVEFORM; + ch->tremolo_waveform_retrigger = true; + ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f; + ch->panning = ch->panning_envelope_panning = .5f; + ch->actual_volume = .0f; + ch->actual_panning = .5f; + } + + mempool = ALIGN_PTR(mempool, 16); + ctx->row_loop_count = (uint8_t *)mempool; + mempool += MAX_NUM_ROWS * sizeof(uint8_t); + +#if JAR_XM_DEFENSIVE + if((ret = jar_xm_check_sanity_postload(ctx))) { DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret); + jar_xm_free_context(ctx); + return 1; + } +#endif + + return 0; +} + +void jar_xm_free_context(jar_xm_context_t *ctx) { + if (ctx != NULL) { JARXM_FREE(ctx->allocated_memory); } +} + +void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) { + ctx->max_loop_count = loopcnt; +} + +uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) { + return ctx->loop_count; +} + +bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) { + bool old = ctx->channels[channel - 1].muted; + ctx->channels[channel - 1].muted = mute; + return old; +} + +bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) { + bool old = ctx->module.instruments[instr - 1].muted; + ctx->module.instruments[instr - 1].muted = mute; + return old; +} + +const char* jar_xm_get_module_name(jar_xm_context_t *ctx) { + return ctx->module.name; +} + +const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) { + return ctx->module.trackername; +} + +uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) { + return ctx->module.num_channels; +} + +uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) { + return ctx->module.length; +} + +uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) { + return ctx->module.num_patterns; +} + +uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) { + return ctx->module.patterns[pattern].num_rows; +} + +uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) { + return ctx->module.num_instruments; +} + +uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) { + return ctx->module.instruments[instrument - 1].num_samples; +} + +void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) { + if(bpm) *bpm = ctx->bpm; + if(tempo) *tempo = ctx->tempo; +} + +void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) { + if(pattern_index) *pattern_index = ctx->current_table_index; + if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index]; + if(row) *row = ctx->current_row; + if(samples) *samples = ctx->generated_samples; +} + +uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) { + return ctx->module.instruments[instr - 1].latest_trigger; +} + +uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) { + return ctx->module.instruments[instr - 1].samples[sample].latest_trigger; +} + +uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) { + return ctx->channels[chn - 1].latest_trigger; +} + +//* .xm files are little-endian. (XXX: Are they really?) + +//* Bound reader macros. +//* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes. +#define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0) +#define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8)) +#define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16)) +#define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset) + +static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) { + uint8_t *dst_c = dst; + const uint8_t *src_c = src; + + /* how many bytes can be copied without overrunning `src` */ + size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0; + copy_bytes = copy_bytes > dst_len ? dst_len : copy_bytes; + + memcpy(dst_c, src_c + offset, copy_bytes); + /* padded bytes */ + memset(dst_c + copy_bytes, 0, dst_len - copy_bytes); +} + +#if JAR_XM_DEFENSIVE + +int jar_xm_check_sanity_preload(const char* module, size_t module_length) { + if(module_length < 60) { return 4; } + if(memcmp("Extended Module: ", module, 17) != 0) { return 1; } + if(module[37] != 0x1A) { return 2; } + if(module[59] != 0x01 || module[58] != 0x04) { return 3; } /* Not XM 1.04 */ + return 0; +} + +int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) { + /* Check the POT */ + for(uint8_t i = 0; i < ctx->module.length; ++i) { + if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) { + if(i+1 == ctx->module.length && ctx->module.length > 1) { + DEBUG("trimming invalid POT at pos %X", i); + --ctx->module.length; + } else { + DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]); + return 1; + } + } + } + + return 0; +} + +#endif + +size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) { + size_t memory_needed = 0; + size_t offset = 60; /* 60 = Skip the first header */ + uint16_t num_channels; + uint16_t num_patterns; + uint16_t num_instruments; + + /* Read the module header */ + num_channels = READ_U16(offset + 8); + num_patterns = READ_U16(offset + 10); + memory_needed += num_patterns * sizeof(jar_xm_pattern_t); + memory_needed = ALIGN(memory_needed, 16); + num_instruments = READ_U16(offset + 12); + memory_needed += num_instruments * sizeof(jar_xm_instrument_t); + memory_needed = ALIGN(memory_needed, 16); + memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */ + + offset += READ_U32(offset); /* Header size */ + + /* Read pattern headers */ + for(uint16_t i = 0; i < num_patterns; ++i) { + uint16_t num_rows; + num_rows = READ_U16(offset + 5); + memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t); + offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */ + } + memory_needed = ALIGN(memory_needed, 16); + + /* Read instrument headers */ + for(uint16_t i = 0; i < num_instruments; ++i) { + uint16_t num_samples; + uint32_t sample_header_size = 0; + uint32_t sample_size_aggregate = 0; + num_samples = READ_U16(offset + 27); + memory_needed += num_samples * sizeof(jar_xm_sample_t); + if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); } + + offset += READ_U32(offset); /* Instrument header size */ + for(uint16_t j = 0; j < num_samples; ++j) { + uint32_t sample_size; + uint8_t flags; + sample_size = READ_U32(offset); + flags = READ_U8(offset + 14); + sample_size_aggregate += sample_size; + + if(flags & (1 << 4)) { /* 16 bit sample */ + memory_needed += sample_size * (sizeof(float) >> 1); + } else { /* 8 bit sample */ + memory_needed += sample_size * sizeof(float); + } + offset += sample_header_size; + } + offset += sample_size_aggregate; + } + + memory_needed += num_channels * sizeof(jar_xm_channel_context_t); + memory_needed += sizeof(jar_xm_context_t); + return memory_needed; +} + +char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t moddata_length, char* mempool) { + size_t offset = 0; + jar_xm_module_t* mod = &(ctx->module); + + /* Read XM header */ + READ_MEMCPY(mod->name, offset + 17, MODULE_NAME_LENGTH); + READ_MEMCPY(mod->trackername, offset + 38, TRACKER_NAME_LENGTH); + offset += 60; + + /* Read module header */ + uint32_t header_size = READ_U32(offset); + mod->length = READ_U16(offset + 4); + mod->restart_position = READ_U16(offset + 6); + mod->num_channels = READ_U16(offset + 8); + mod->num_patterns = READ_U16(offset + 10); + mod->num_instruments = READ_U16(offset + 12); + mod->patterns = (jar_xm_pattern_t*)mempool; + mod->linear_interpolation = 1; // Linear interpolation can be set after loading + mod->ramping = 1; // ramping can be set after loading + mempool += mod->num_patterns * sizeof(jar_xm_pattern_t); + mempool = ALIGN_PTR(mempool, 16); + mod->instruments = (jar_xm_instrument_t*)mempool; + mempool += mod->num_instruments * sizeof(jar_xm_instrument_t); + mempool = ALIGN_PTR(mempool, 16); + uint16_t flags = READ_U32(offset + 14); + mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES; + ctx->default_tempo = READ_U16(offset + 16); + ctx->default_bpm = READ_U16(offset + 18); + ctx->tempo =ctx->default_tempo; + ctx->bpm = ctx->default_bpm; + + READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH); + offset += header_size; + + /* Read patterns */ + for(uint16_t i = 0; i < mod->num_patterns; ++i) { + uint16_t packed_patterndata_size = READ_U16(offset + 7); + jar_xm_pattern_t* pat = mod->patterns + i; + pat->num_rows = READ_U16(offset + 5); + pat->slots = (jar_xm_pattern_slot_t*)mempool; + mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t); + offset += READ_U32(offset); /* Pattern header length */ + + if(packed_patterndata_size == 0) { /* No pattern data is present */ + memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels); + } else { + /* This isn't your typical for loop */ + for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) { + uint8_t note = READ_U8(offset + j); + jar_xm_pattern_slot_t* slot = pat->slots + k; + if(note & (1 << 7)) { + /* MSB is set, this is a compressed packet */ + ++j; + if(note & (1 << 0)) { /* Note follows */ + slot->note = READ_U8(offset + j); + ++j; + } else { + slot->note = 0; + } + if(note & (1 << 1)) { /* Instrument follows */ + slot->instrument = READ_U8(offset + j); + ++j; + } else { + slot->instrument = 0; + } + if(note & (1 << 2)) { /* Volume column follows */ + slot->volume_column = READ_U8(offset + j); + ++j; + } else { + slot->volume_column = 0; + } + if(note & (1 << 3)) { /* Effect follows */ + slot->effect_type = READ_U8(offset + j); + ++j; + } else { + slot->effect_type = 0; + } + if(note & (1 << 4)) { /* Effect parameter follows */ + slot->effect_param = READ_U8(offset + j); + ++j; + } else { + slot->effect_param = 0; + } + } else { /* Uncompressed packet */ + slot->note = note; + slot->instrument = READ_U8(offset + j + 1); + slot->volume_column = READ_U8(offset + j + 2); + slot->effect_type = READ_U8(offset + j + 3); + slot->effect_param = READ_U8(offset + j + 4); + j += 5; + } + } + } + + offset += packed_patterndata_size; + } + mempool = ALIGN_PTR(mempool, 16); + + /* Read instruments */ + for(uint16_t i = 0; i < ctx->module.num_instruments; ++i) { + uint32_t sample_header_size = 0; + jar_xm_instrument_t* instr = mod->instruments + i; + + READ_MEMCPY(instr->name, offset + 4, INSTRUMENT_NAME_LENGTH); + instr->num_samples = READ_U16(offset + 27); + + if(instr->num_samples > 0) { + /* Read extra header properties */ + sample_header_size = READ_U32(offset + 29); + READ_MEMCPY(instr->sample_of_notes, offset + 33, NUM_NOTES); + + instr->volume_envelope.num_points = READ_U8(offset + 225); + instr->panning_envelope.num_points = READ_U8(offset + 226); + + for(uint8_t j = 0; j < instr->volume_envelope.num_points; ++j) { + instr->volume_envelope.points[j].frame = READ_U16(offset + 129 + 4 * j); + instr->volume_envelope.points[j].value = READ_U16(offset + 129 + 4 * j + 2); + } + + for(uint8_t j = 0; j < instr->panning_envelope.num_points; ++j) { + instr->panning_envelope.points[j].frame = READ_U16(offset + 177 + 4 * j); + instr->panning_envelope.points[j].value = READ_U16(offset + 177 + 4 * j + 2); + } + + instr->volume_envelope.sustain_point = READ_U8(offset + 227); + instr->volume_envelope.loop_start_point = READ_U8(offset + 228); + instr->volume_envelope.loop_end_point = READ_U8(offset + 229); + instr->panning_envelope.sustain_point = READ_U8(offset + 230); + instr->panning_envelope.loop_start_point = READ_U8(offset + 231); + instr->panning_envelope.loop_end_point = READ_U8(offset + 232); + + uint8_t flags = READ_U8(offset + 233); + instr->volume_envelope.enabled = flags & (1 << 0); + instr->volume_envelope.sustain_enabled = flags & (1 << 1); + instr->volume_envelope.loop_enabled = flags & (1 << 2); + + flags = READ_U8(offset + 234); + instr->panning_envelope.enabled = flags & (1 << 0); + instr->panning_envelope.sustain_enabled = flags & (1 << 1); + instr->panning_envelope.loop_enabled = flags & (1 << 2); + instr->vibrato_type = READ_U8(offset + 235); + if(instr->vibrato_type == 2) { + instr->vibrato_type = 1; + } else if(instr->vibrato_type == 1) { + instr->vibrato_type = 2; + } + instr->vibrato_sweep = READ_U8(offset + 236); + instr->vibrato_depth = READ_U8(offset + 237); + instr->vibrato_rate = READ_U8(offset + 238); + instr->volume_fadeout = READ_U16(offset + 239); + instr->samples = (jar_xm_sample_t*)mempool; + mempool += instr->num_samples * sizeof(jar_xm_sample_t); + } else { + instr->samples = NULL; + } + + /* Instrument header size */ + offset += READ_U32(offset); + + for(int j = 0; j < instr->num_samples; ++j) { + /* Read sample header */ + jar_xm_sample_t* sample = instr->samples + j; + + sample->length = READ_U32(offset); + sample->loop_start = READ_U32(offset + 4); + sample->loop_length = READ_U32(offset + 8); + sample->loop_end = sample->loop_start + sample->loop_length; + sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f; + if (sample->volume > 1.0f) {sample->volume = 1.f;}; + sample->finetune = (int8_t)READ_U8(offset + 13); + + uint8_t flags = READ_U8(offset + 14); + switch (flags & 3) { + case 2: + case 3: + sample->loop_type = jar_xm_PING_PONG_LOOP; + case 1: + sample->loop_type = jar_xm_FORWARD_LOOP; + break; + default: + sample->loop_type = jar_xm_NO_LOOP; + break; + }; + sample->bits = (flags & 0x10) ? 16 : 8; + sample->stereo = (flags & 0x20) ? 1 : 0; + sample->panning = (float)READ_U8(offset + 15) / 255.f; + sample->relative_note = (int8_t)READ_U8(offset + 16); + READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH); + sample->data = (float*)mempool; + if(sample->bits == 16) { + /* 16 bit sample */ + mempool += sample->length * (sizeof(float) >> 1); + sample->loop_start >>= 1; + sample->loop_length >>= 1; + sample->loop_end >>= 1; + sample->length >>= 1; + } else { + /* 8 bit sample */ + mempool += sample->length * sizeof(float); + } + // Adjust loop points to reflect half of the reported length (stereo) + if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) { + div_t lstart = div(READ_U32(offset + 4), 2); + sample->loop_start = lstart.quot; + div_t llength = div(READ_U32(offset + 8), 2); + sample->loop_length = llength.quot; + sample->loop_end = sample->loop_start + sample->loop_length; + }; + + offset += sample_header_size; + } + + // Read all samples and convert them to float values + for(int j = 0; j < instr->num_samples; ++j) { + /* Read sample data */ + jar_xm_sample_t* sample = instr->samples + j; + int length = sample->length; + if (sample->stereo) { + // Since it is stereo, we cut the sample in half (treated as single channel) + div_t result = div(sample->length, 2); + if(sample->bits == 16) { + int16_t v = 0; + for(int k = 0; k < length; ++k) { + if (k == result.quot) { v = 0;}; + v = v + (int16_t)READ_U16(offset + (k << 1)); + sample->data[k] = (float) v / 32768.f ;//* sign; + if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; + } + offset += sample->length << 1; + } else { + int8_t v = 0; + for(int k = 0; k < length; ++k) { + if (k == result.quot) { v = 0;}; + v = v + (int8_t)READ_U8(offset + k); + sample->data[k] = (float)v / 128.f ;//* sign; + if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; + } + offset += sample->length; + }; + sample->length = result.quot; + } else { + if(sample->bits == 16) { + int16_t v = 0; + for(int k = 0; k < length; ++k) { + v = v + (int16_t)READ_U16(offset + (k << 1)); + sample->data[k] = (float) v / 32768.f ;//* sign; + if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; + } + offset += sample->length << 1; + } else { + int8_t v = 0; + for(int k = 0; k < length; ++k) { + v = v + (int8_t)READ_U8(offset + k); + sample->data[k] = (float)v / 128.f ;//* sign; + if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; + } + offset += sample->length; + } + } + }; + }; + return mempool; +}; + +//------------------------------------------------------------------------------- +//THE FOLLOWING IS FOR PLAYING +static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t); +static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*); +static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); +static void jar_xm_tremolo(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); +static void jar_xm_arpeggio(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); +static void jar_xm_tone_portamento(jar_xm_context_t*, jar_xm_channel_context_t*); +static void jar_xm_pitch_slide(jar_xm_context_t*, jar_xm_channel_context_t*, float); +static void jar_xm_panning_slide(jar_xm_channel_context_t*, uint8_t); +static void jar_xm_volume_slide(jar_xm_channel_context_t*, uint8_t); + +static float jar_xm_envelope_lerp(jar_xm_envelope_point_t*, jar_xm_envelope_point_t*, uint16_t); +static void jar_xm_envelope_tick(jar_xm_channel_context_t*, jar_xm_envelope_t*, uint16_t*, float*); +static void jar_xm_envelopes(jar_xm_channel_context_t*); + +static float jar_xm_linear_period(float); +static float jar_xm_linear_frequency(float); +static float jar_xm_amiga_period(float); +static float jar_xm_amiga_frequency(float); +static float jar_xm_period(jar_xm_context_t*, float); +static float jar_xm_frequency(jar_xm_context_t*, float, float); +static void jar_xm_update_frequency(jar_xm_context_t*, jar_xm_channel_context_t*); + +static void jar_xm_handle_note_and_instrument(jar_xm_context_t*, jar_xm_channel_context_t*, jar_xm_pattern_slot_t*); +static void jar_xm_trigger_note(jar_xm_context_t*, jar_xm_channel_context_t*, unsigned int flags); +static void jar_xm_cut_note(jar_xm_channel_context_t*); +static void jar_xm_key_off(jar_xm_channel_context_t*); + +static void jar_xm_post_pattern_change(jar_xm_context_t*); +static void jar_xm_row(jar_xm_context_t*); +static void jar_xm_tick(jar_xm_context_t*); + +static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int); +static void jar_xm_mixdown(jar_xm_context_t*, float*, float*); + +#define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0) +#define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1) +#define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2) + + // C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3 +static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017, 961, 907, 856 }; + + // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f +static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f }; + + // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f +static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f }; + +#define jar_xm_CLAMP_UP1F(vol, limit) do { \ + if((vol) > (limit)) (vol) = (limit); \ + } while(0) +#define jar_xm_CLAMP_UP(vol) jar_xm_CLAMP_UP1F((vol), 1.f) + +#define jar_xm_CLAMP_DOWN1F(vol, limit) do { \ + if((vol) < (limit)) (vol) = (limit); \ + } while(0) +#define jar_xm_CLAMP_DOWN(vol) jar_xm_CLAMP_DOWN1F((vol), .0f) + +#define jar_xm_CLAMP2F(vol, up, down) do { \ + if((vol) > (up)) (vol) = (up); \ + else if((vol) < (down)) (vol) = (down); \ + } while(0) +#define jar_xm_CLAMP(vol) jar_xm_CLAMP2F((vol), 1.f, .0f) + +#define jar_xm_SLIDE_TOWARDS(val, goal, incr) do { \ + if((val) > (goal)) { \ + (val) -= (incr); \ + jar_xm_CLAMP_DOWN1F((val), (goal)); \ + } else if((val) < (goal)) { \ + (val) += (incr); \ + jar_xm_CLAMP_UP1F((val), (goal)); \ + } \ + } while(0) + +#define jar_xm_LERP(u, v, t) ((u) + (t) * ((v) - (u))) +#define jar_xm_INVERSE_LERP(u, v, lerp) (((lerp) - (u)) / ((v) - (u))) + +#define HAS_TONE_PORTAMENTO(s) ((s)->effect_type == 3 \ + || (s)->effect_type == 5 \ + || ((s)->volume_column >> 4) == 0xF) +#define HAS_ARPEGGIO(s) ((s)->effect_type == 0 \ + && (s)->effect_param != 0) +#define HAS_VIBRATO(s) ((s)->effect_type == 4 \ + || (s)->effect_param == 6 \ + || ((s)->volume_column >> 4) == 0xB) +#define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97) +#define NOTE_OFF 97 + +static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) { + static unsigned int next_rand = 24492; + step %= 0x40; + switch(waveform) { + case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */ + return -sinf(2.f * 3.141592f * (float)step / (float)0x40); + case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */ + return (float)(0x20 - step) / 0x20; + case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */ + return (step >= 0x20) ? 1.f : -1.f; + case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */ + next_rand = next_rand * 1103515245 + 12345; + return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f; + case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */ + return (float)(step - 0x20) / 0x20; + default: + break; + } + return .0f; +} + +static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { + if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return; + jar_xm_instrument_t* instr = ch->instrument; + float sweep = 1.f; + if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); } + unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2; + ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep; + jar_xm_update_frequency(ctx, ch); +} + +static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { + unsigned int step = pos * (param >> 4); + ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF; + jar_xm_update_frequency(ctx, ch); +} + +static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { + unsigned int step = pos * (param >> 4); + ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF; +} + +static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) { + switch(tick % 3) { + case 0: + ch->arp_in_progress = false; + ch->arp_note_offset = 0; + break; + case 2: + ch->arp_in_progress = true; + ch->arp_note_offset = param >> 4; + break; + case 1: + ch->arp_in_progress = true; + ch->arp_note_offset = param & 0x0F; + break; + } + jar_xm_update_frequency(ctx, ch); +} + +static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { + /* 3xx called without a note, wait until we get an actual target note. */ + if(ch->tone_portamento_target_period == 0.f) return; /* no value, exit */ + if(ch->period != ch->tone_portamento_target_period) { + jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param); + jar_xm_update_frequency(ctx, ch); + } +} + +static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) { + /* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by ear™. */ + if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; } + ch->period += period_offset; + jar_xm_CLAMP_DOWN(ch->period); + /* XXX: upper bound of period ? */ + jar_xm_update_frequency(ctx, ch); +} + +static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { + if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;}; + if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;}; +}; + +static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { + if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;}; + if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;}; +}; + +static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) { + /* Linear interpolation between two envelope points */ + if(pos <= a->frame) return a->value; + else if(pos >= b->frame) return b->value; + else { + float p = (float)(pos - a->frame) / (float)(b->frame - a->frame); + return a->value * (1 - p) + b->value * p; + } +} + +static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) { + /* Loop if necessary */ + if(ctx->current_table_index >= ctx->module.length) { + ctx->current_table_index = ctx->module.restart_position; + ctx->tempo =ctx->default_tempo; // reset to file default value + ctx->bpm = ctx->default_bpm; // reset to file default value + ctx->global_volume = ctx->default_global_volume; // reset to file default value + } +} + +static float jar_xm_linear_period(float note) { + return 7680.f - note * 64.f; +} + +static float jar_xm_linear_frequency(float period) { + return 8363.f * powf(2.f, (4608.f - period) / 768.f); +} + +static float jar_xm_amiga_period(float note) { + unsigned int intnote = note; + uint8_t a = intnote % 12; + int8_t octave = note / 12.f - 2; + uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1]; + if(octave > 0) { + p1 >>= octave; + p2 >>= octave; + } else if(octave < 0) { + p1 <<= -octave; + p2 <<= -octave; + } + return jar_xm_LERP(p1, p2, note - intnote); +} + +static float jar_xm_amiga_frequency(float period) { + if(period == .0f) return .0f; + return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */ +} + +static float jar_xm_period(jar_xm_context_t* ctx, float note) { + switch(ctx->module.frequency_type) { + case jar_xm_LINEAR_FREQUENCIES: + return jar_xm_linear_period(note); + case jar_xm_AMIGA_FREQUENCIES: + return jar_xm_amiga_period(note); + } + return .0f; +} + +static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) { + switch(ctx->module.frequency_type) { + case jar_xm_LINEAR_FREQUENCIES: + return jar_xm_linear_frequency(period - 64.f * note_offset); + case jar_xm_AMIGA_FREQUENCIES: + if(note_offset == 0) { return jar_xm_amiga_frequency(period); }; + int8_t octave; + float note; + uint16_t p1, p2; + uint8_t a = octave = 0; + + /* Find the octave of the current period */ + if(period > amiga_frequencies[0]) { + --octave; + while(period > (amiga_frequencies[0] << -octave)) --octave; + } else if(period < amiga_frequencies[12]) { + ++octave; + while(period < (amiga_frequencies[12] >> octave)) ++octave; + } + + /* Find the smallest note closest to the current period */ + for(uint8_t i = 0; i < 12; ++i) { + p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1]; + if(octave > 0) { + p1 >>= octave; + p2 >>= octave; + } else if(octave < 0) { + p1 <<= (-octave); + p2 <<= (-octave); + } + if(p2 <= period && period <= p1) { + a = i; + break; + } + } + if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); } + note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period); + return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset)); + } + + return .0f; +} + +static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { + ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : ( ch->vibrato_note_offset + ch->autovibrato_note_offset )) ); + ch->step = ch->frequency / ctx->rate; +} + +static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) { + jar_xm_module_t* mod = &(ctx->module); + if(s->instrument > 0) { + if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) { /* Tone portamento in effect */ + jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); + } else if(s->instrument > ctx->module.num_instruments) { /* Invalid instrument, Cut current note */ + jar_xm_cut_note(ch); + ch->instrument = NULL; + ch->sample = NULL; + } else { + ch->instrument = ctx->module.instruments + (s->instrument - 1); + if(s->note == 0 && ch->sample != NULL) { /* Ghost instrument, trigger note */ + /* Sample position is kept, but envelopes are reset */ + jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); + } + } + } + + if(NOTE_IS_VALID(s->note)) { + // note value is s->note -1 + jar_xm_instrument_t* instr = ch->instrument; + if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) { + /* Tone portamento in effect */ + ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; + ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note); + } else if(instr == NULL || ch->instrument->num_samples == 0) { /* Issue on instrument */ + jar_xm_cut_note(ch); + } else { + if(instr->sample_of_notes[s->note - 1] < instr->num_samples) { + if (mod->ramping) { + for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) { + jar_xm_next_of_sample(ctx, ch, i); + } + ch->frame_count = 0; + }; + ch->sample = instr->samples + instr->sample_of_notes[s->note - 1]; + ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; + if(s->instrument > 0) { + jar_xm_trigger_note(ctx, ch, 0); + } else { /* Ghost note: keep old volume */ + jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME); + } + } else { + jar_xm_cut_note(ch); + } + } + } else if(s->note == NOTE_OFF) { + jar_xm_key_off(ch); + } + + // Interpret Effect column + switch(s->effect_type) { + case 1: /* 1xx: Portamento up */ + if(s->effect_param > 0) { ch->portamento_up_param = s->effect_param; } + break; + case 2: /* 2xx: Portamento down */ + if(s->effect_param > 0) { ch->portamento_down_param = s->effect_param; } + break; + case 3: /* 3xx: Tone portamento */ + if(s->effect_param > 0) { ch->tone_portamento_param = s->effect_param; } + break; + case 4: /* 4xy: Vibrato */ + if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); } /* Set vibrato depth */ + if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); } /* Set vibrato speed */ + break; + case 5: /* 5xy: Tone portamento + Volume slide */ + if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } + break; + case 6: /* 6xy: Vibrato + Volume slide */ + if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } + break; + case 7: /* 7xy: Tremolo */ + if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */ + if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); } /* Set tremolo speed */ + break; + case 8: /* 8xx: Set panning */ + ch->panning = (float)s->effect_param / 255.f; + break; + case 9: /* 9xx: Sample offset */ + if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) { + uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8); + switch (ch->sample->loop_type) { + case jar_xm_NO_LOOP: + if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */ + ch->sample_position = -1; + } else { + ch->sample_position = final_offset; + } + break; + case jar_xm_FORWARD_LOOP: + if (final_offset >= ch->sample->loop_end) { + ch->sample_position -= ch->sample->loop_length; + } else if(final_offset >= ch->sample->length) { + ch->sample_position = ch->sample->loop_start; + } else { + ch->sample_position = final_offset; + } + break; + case jar_xm_PING_PONG_LOOP: + if(final_offset >= ch->sample->loop_end) { + ch->ping = false; + ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; + } else if(final_offset >= ch->sample->length) { + ch->ping = false; + ch->sample_position -= ch->sample->length - 1; + } else { + ch->sample_position = final_offset; + }; + break; + } + } + break; + case 0xA: /* Axy: Volume slide */ + if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } + break; + case 0xB: /* Bxx: Position jump */ + if(s->effect_param < ctx->module.length) { + ctx->position_jump = true; + ctx->jump_dest = s->effect_param; + } + break; + case 0xC: /* Cxx: Set volume */ + ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; + break; + case 0xD: /* Dxx: Pattern break */ + /* Jump after playing this line */ + ctx->pattern_break = true; + ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F); + break; + case 0xE: /* EXy: Extended command */ + switch(s->effect_param >> 4) { + case 1: /* E1y: Fine portamento up */ + if(s->effect_param & 0x0F) { ch->fine_portamento_up_param = s->effect_param & 0x0F; } + jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param); + break; + case 2: /* E2y: Fine portamento down */ + if(s->effect_param & 0x0F) { ch->fine_portamento_down_param = s->effect_param & 0x0F; } + jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param); + break; + case 4: /* E4y: Set vibrato control */ + ch->vibrato_waveform = s->effect_param & 3; + ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1); + break; + case 5: /* E5y: Set finetune */ + if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) { + ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f; + ch->period = jar_xm_period(ctx, ch->note); + jar_xm_update_frequency(ctx, ch); + } + break; + case 6: /* E6y: Pattern loop */ + if(s->effect_param & 0x0F) { + if((s->effect_param & 0x0F) == ch->pattern_loop_count) { /* Loop is over */ + ch->pattern_loop_count = 0; + ctx->position_jump = false; + } else { /* Jump to the beginning of the loop */ + ch->pattern_loop_count++; + ctx->position_jump = true; + ctx->jump_row = ch->pattern_loop_origin; + ctx->jump_dest = ctx->current_table_index; + } + } else { + ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */ + ctx->jump_row = ch->pattern_loop_origin; /* Replicate FT2 E60 bug */ + } + break; + case 7: /* E7y: Set tremolo control */ + ch->tremolo_waveform = s->effect_param & 3; + ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1); + break; + case 0xA: /* EAy: Fine volume slide up */ + if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } + jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4); + break; + case 0xB: /* EBy: Fine volume slide down */ + if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } + jar_xm_volume_slide(ch, ch->fine_volume_slide_param); + break; + case 0xD: /* EDy: Note delay */ + /* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x ≠ 0) does not. */ + if(s->note == 0 && s->instrument == 0) { + unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME; + if(ch->current->effect_param & 0x0F) { + ch->note = ch->orig_note; + jar_xm_trigger_note(ctx, ch, flags); + } else { + jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION ); + } + } + break; + + case 0xE: /* EEy: Pattern delay */ + ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo; + break; + default: + break; + } + break; + + case 0xF: /* Fxx: Set tempo/BPM */ + if(s->effect_param > 0) { + if(s->effect_param <= 0x1F) { // First 32 possible values adjust the ticks (goes into tempo) + ctx->tempo = s->effect_param; + } else { //32 and greater values adjust the BPM + ctx->bpm = s->effect_param; + } + } + break; + + case 16: /* Gxx: Set global volume */ + ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; + break; + case 17: /* Hxy: Global volume slide */ + if(s->effect_param > 0) { ch->global_volume_slide_param = s->effect_param; } + break; + case 21: /* Lxx: Set envelope position */ + ch->volume_envelope_frame_count = s->effect_param; + ch->panning_envelope_frame_count = s->effect_param; + break; + case 25: /* Pxy: Panning slide */ + if(s->effect_param > 0) { ch->panning_slide_param = s->effect_param; } + break; + case 27: /* Rxy: Multi retrig note */ + if(s->effect_param > 0) { + if((s->effect_param >> 4) == 0) { /* Keep previous x value */ + ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F); + } else { + ch->multi_retrig_param = s->effect_param; + } + } + break; + case 29: /* Txy: Tremor */ + if(s->effect_param > 0) { ch->tremor_param = s->effect_param; } /* Tremor x and y params are not separately kept in memory, unlike Rxy */ + break; + case 33: /* Xxy: Extra stuff */ + switch(s->effect_param >> 4) { + case 1: /* X1y: Extra fine portamento up */ + if(s->effect_param & 0x0F) { ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; } + jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param); + break; + case 2: /* X2y: Extra fine portamento down */ + if(s->effect_param & 0x0F) { ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; } + jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param); + break; + default: + break; + } + break; + default: + break; + } +} + +static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) { + if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) { + ch->sample_position = 0.f; + ch->ping = true; + }; + + if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) { + if(ch->sample != NULL) { + ch->volume = ch->sample->volume; + }; + }; + ch->panning = ch->sample->panning; + ch->sustained = true; + ch->fadeout_volume = ch->volume_envelope_volume = 1.0f; + ch->panning_envelope_panning = .5f; + ch->volume_envelope_frame_count = ch->panning_envelope_frame_count = 0; + ch->vibrato_note_offset = 0.f; + ch->tremolo_volume = 0.f; + ch->tremor_on = false; + ch->autovibrato_ticks = 0; + + if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */ + if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; } + if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) { + ch->period = jar_xm_period(ctx, ch->note); + jar_xm_update_frequency(ctx, ch); + } + ch->latest_trigger = ctx->generated_samples; + if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; } + if(ch->sample != NULL) { ch->sample->latest_trigger = ctx->generated_samples; } +} + +static void jar_xm_cut_note(jar_xm_channel_context_t* ch) { + ch->volume = .0f; /* NB: this is not the same as Key Off */ +// ch->curr_left = .0f; +// ch->curr_right = .0f; +} + +static void jar_xm_key_off(jar_xm_channel_context_t* ch) { + ch->sustained = false; /* Key Off */ + if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */ +} + +static void jar_xm_row(jar_xm_context_t* ctx) { + if(ctx->position_jump) { + ctx->current_table_index = ctx->jump_dest; + ctx->current_row = ctx->jump_row; + ctx->position_jump = false; + ctx->pattern_break = false; + ctx->jump_row = 0; + jar_xm_post_pattern_change(ctx); + } else if(ctx->pattern_break) { + ctx->current_table_index++; + ctx->current_row = ctx->jump_row; + ctx->pattern_break = false; + ctx->jump_row = 0; + jar_xm_post_pattern_change(ctx); + } + jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; + bool in_a_loop = false; + + /* Read notes information for all channels into temporary pattern slot */ + for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { + jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i; + jar_xm_channel_context_t* ch = ctx->channels + i; + ch->current = s; + // If there is no note delay effect (0xED) then... + if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) { + //********** Process the channel slot information ********** + jar_xm_handle_note_and_instrument(ctx, ch, s); + } else { + // read the note delay information + ch->note_delay_param = s->effect_param & 0x0F; + } + if(!in_a_loop && ch->pattern_loop_count > 0) { + // clarify if in a loop or not + in_a_loop = true; + } + } + + if(!in_a_loop) { + /* No E6y loop is in effect (or we are in the first pass) */ + ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++); + } + + /// Move to next row + ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */ + if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) { + ctx->current_table_index++; + ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */ + ctx->jump_row = 0; + jar_xm_post_pattern_change(ctx); + } +} + +static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) { + if(env->num_points < 2) { + if(env->num_points == 1) { + *outval = (float)env->points[0].value / (float)0x40; + if(*outval > 1) { *outval = 1; }; + } else {; + return; + }; + } else { + if(env->loop_enabled) { + uint16_t loop_start = env->points[env->loop_start_point].frame; + uint16_t loop_end = env->points[env->loop_end_point].frame; + uint16_t loop_length = loop_end - loop_start; + if(*counter >= loop_end) { *counter -= loop_length; }; + }; + for(uint8_t j = 0; j < (env->num_points - 1); ++j) { + if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) { + *outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40; + break; + }; + }; + /* Make sure it is safe to increment frame count */ + if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; }; + }; +}; + +static void jar_xm_envelopes(jar_xm_channel_context_t *ch) { + if(ch->instrument != NULL) { + if(ch->instrument->volume_envelope.enabled) { + if(!ch->sustained) { + ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f; + jar_xm_CLAMP_DOWN(ch->fadeout_volume); + }; + jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume)); + }; + if(ch->instrument->panning_envelope.enabled) { + jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning)); + }; + }; +}; + +static void jar_xm_tick(jar_xm_context_t* ctx) { + if(ctx->current_tick == 0) { + jar_xm_row(ctx); // We have processed all ticks and we run the row + } + + jar_xm_module_t* mod = &(ctx->module); + for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { + jar_xm_channel_context_t* ch = ctx->channels + i; + jar_xm_envelopes(ch); + jar_xm_autovibrato(ctx, ch); + if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) { + ch->arp_in_progress = false; + ch->arp_note_offset = 0; + jar_xm_update_frequency(ctx, ch); + } + if(ch->vibrato_in_progress && !HAS_VIBRATO(ch->current)) { + ch->vibrato_in_progress = false; + ch->vibrato_note_offset = 0.f; + jar_xm_update_frequency(ctx, ch); + } + + // Effects in volumne column mostly handled on a per tick basis + switch(ch->current->volume_column & 0xF0) { + case 0x50: // Checks for volume = 64 + if(ch->current->volume_column != 0x50) break; + case 0x10: // Set volume 0-15 + case 0x20: // Set volume 16-32 + case 0x30: // Set volume 32-48 + case 0x40: // Set volume 48-64 + ch->volume = (float)(ch->current->volume_column - 16) / 64.0f; + break; + case 0x60: // Volume slide down + jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); + break; + case 0x70: // Volume slide up + jar_xm_volume_slide(ch, ch->current->volume_column << 4); + break; + case 0x80: // Fine volume slide down + jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); + break; + case 0x90: // Fine volume slide up + jar_xm_volume_slide(ch, ch->current->volume_column << 4); + break; + case 0xA0: // Set vibrato speed + ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4); + break; + case 0xB0: // Vibrato + ch->vibrato_in_progress = false; + jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); + break; + case 0xC0: // Set panning + if(!ctx->current_tick ) { + ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f; + } + break; + case 0xD0: // Panning slide left + jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F); + break; + case 0xE0: // Panning slide right + jar_xm_panning_slide(ch, ch->current->volume_column << 4); + break; + case 0xF0: // Tone portamento + if(!ctx->current_tick ) { + if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); } + }; + jar_xm_tone_portamento(ctx, ch); + break; + default: + break; + } + + // Only some standard effects handled on a per tick basis + // see jar_xm_handle_note_and_instrument for all effects handling on a per row basis + switch(ch->current->effect_type) { + case 0: /* 0xy: Arpeggio */ + if(ch->current->effect_param > 0) { + char arp_offset = ctx->tempo % 3; + switch(arp_offset) { + case 2: /* 0 -> x -> 0 -> y -> x -> … */ + if(ctx->current_tick == 1) { + ch->arp_in_progress = true; + ch->arp_note_offset = ch->current->effect_param >> 4; + jar_xm_update_frequency(ctx, ch); + break; + } + /* No break here, this is intended */ + case 1: /* 0 -> 0 -> y -> x -> … */ + if(ctx->current_tick == 0) { + ch->arp_in_progress = false; + ch->arp_note_offset = 0; + jar_xm_update_frequency(ctx, ch); + break; + } + /* No break here, this is intended */ + case 0: /* 0 -> y -> x -> … */ + jar_xm_arpeggio(ctx, ch, ch->current->effect_param, ctx->current_tick - arp_offset); + default: + break; + } + } + break; + + case 1: /* 1xx: Portamento up */ + if(ctx->current_tick == 0) break; + jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param); + break; + case 2: /* 2xx: Portamento down */ + if(ctx->current_tick == 0) break; + jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param); + break; + case 3: /* 3xx: Tone portamento */ + if(ctx->current_tick == 0) break; + jar_xm_tone_portamento(ctx, ch); + break; + case 4: /* 4xy: Vibrato */ + if(ctx->current_tick == 0) break; + ch->vibrato_in_progress = true; + jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); + break; + case 5: /* 5xy: Tone portamento + Volume slide */ + if(ctx->current_tick == 0) break; + jar_xm_tone_portamento(ctx, ch); + jar_xm_volume_slide(ch, ch->volume_slide_param); + break; + case 6: /* 6xy: Vibrato + Volume slide */ + if(ctx->current_tick == 0) break; + ch->vibrato_in_progress = true; + jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); + jar_xm_volume_slide(ch, ch->volume_slide_param); + break; + case 7: /* 7xy: Tremolo */ + if(ctx->current_tick == 0) break; + jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++); + break; + case 8: /* 8xy: Set panning */ + break; + case 9: /* 9xy: Sample offset */ + break; + case 0xA: /* Axy: Volume slide */ + if(ctx->current_tick == 0) break; + jar_xm_volume_slide(ch, ch->volume_slide_param); + break; + case 0xE: /* EXy: Extended command */ + switch(ch->current->effect_param >> 4) { + case 0x9: /* E9y: Retrigger note */ + if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) { + if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) { + jar_xm_trigger_note(ctx, ch, 0); + jar_xm_envelopes(ch); + } + } + break; + case 0xC: /* ECy: Note cut */ + if((ch->current->effect_param & 0x0F) == ctx->current_tick) { + jar_xm_cut_note(ch); + } + break; + case 0xD: /* EDy: Note delay */ + if(ch->note_delay_param == ctx->current_tick) { + jar_xm_handle_note_and_instrument(ctx, ch, ch->current); + jar_xm_envelopes(ch); + } + break; + default: + break; + } + break; + case 16: /* Fxy: Set tempo/BPM */ + break; + case 17: /* Hxy: Global volume slide */ + if(ctx->current_tick == 0) break; + if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */ + if(ch->global_volume_slide_param & 0xF0) { /* Global slide up */ + float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40; + ctx->global_volume += f; + jar_xm_CLAMP_UP(ctx->global_volume); + } else { /* Global slide down */ + float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40; + ctx->global_volume -= f; + jar_xm_CLAMP_DOWN(ctx->global_volume); + }; + break; + + case 20: /* Kxx: Key off */ + if(ctx->current_tick == ch->current->effect_param) { jar_xm_key_off(ch); }; + break; + case 21: /* Lxx: Set envelope position */ + break; + case 25: /* Pxy: Panning slide */ + if(ctx->current_tick == 0) break; + jar_xm_panning_slide(ch, ch->panning_slide_param); + break; + case 27: /* Rxy: Multi retrig note */ + if(ctx->current_tick == 0) break; + if(((ch->multi_retrig_param) & 0x0F) == 0) break; + if((ctx->current_tick % (ch->multi_retrig_param & 0x0F)) == 0) { + float v = ch->volume * multi_retrig_multiply[ch->multi_retrig_param >> 4] + + multi_retrig_add[ch->multi_retrig_param >> 4]; + jar_xm_CLAMP(v); + jar_xm_trigger_note(ctx, ch, 0); + ch->volume = v; + }; + break; + + case 29: /* Txy: Tremor */ + if(ctx->current_tick == 0) break; + ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4) ); + break; + default: + break; + }; + + float panning, volume; + panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f; + if(ch->tremor_on) { + volume = .0f; + } else { + volume = ch->volume + ch->tremolo_volume; + jar_xm_CLAMP(volume); + volume *= ch->fadeout_volume * ch->volume_envelope_volume; + }; + + if (mod->ramping) { + ch->target_panning = panning; + ch->target_volume = volume; + } else { + ch->actual_panning = panning; + ch->actual_volume = volume; + }; + }; + + ctx->current_tick++; // ok so we understand that ticks increment within the row + if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) { + // This means it reached the end of the row and we reset + ctx->current_tick = 0; + ctx->extra_ticks = 0; + }; + + // Number of ticks / second = BPM * 0.4 + ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f); +}; + +static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) { + jar_xm_module_t* mod = &(ctx->module); + +// ch->curr_left = 0.f; +// ch->curr_right = 0.f; + if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) { + ch->curr_left = 0.f; + ch->curr_right = 0.f; + if (mod->ramping) { + if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { + if (previous > -1) { + ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + } else { + ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + }; + }; + }; + return; + }; + if(ch->sample->length == 0) { + return; + }; + + float t = 0.f; + uint32_t b = 0; + if(mod->linear_interpolation) { + b = ch->sample_position + 1; + t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */ + }; + + float u_left, u_right; + u_left = ch->sample->data[(uint32_t)ch->sample_position]; + if (ch->sample->stereo) { + u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length]; + } else { + u_right = u_left; + }; + float v_left = 0.f, v_right = 0.f; + switch(ch->sample->loop_type) { + case jar_xm_NO_LOOP: + if(mod->linear_interpolation) { + v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f; + if (ch->sample->stereo) { + v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f; + } else { + v_right = v_left; + }; + }; + ch->sample_position += ch->step; + if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample + break; + case jar_xm_FORWARD_LOOP: + if(mod->linear_interpolation) { + v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ]; + if (ch->sample->stereo) { + v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length]; + } else { + v_right = v_left; + }; + }; + ch->sample_position += ch->step; + if (ch->sample_position >= ch->sample->loop_end) { + ch->sample_position -= ch->sample->loop_length; + }; + if(ch->sample_position >= ch->sample->length) { + ch->sample_position = ch->sample->loop_start; + }; + break; + case jar_xm_PING_PONG_LOOP: + if(ch->ping) { + if(mod->linear_interpolation) { + v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b]; + if (ch->sample->stereo) { + v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length]; + } else { + v_right = v_left; + }; + }; + ch->sample_position += ch->step; + if(ch->sample_position >= ch->sample->loop_end) { + ch->ping = false; + ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; + }; + if(ch->sample_position >= ch->sample->length) { + ch->ping = false; + ch->sample_position -= ch->sample->length - 1; + }; + } else { + if(mod->linear_interpolation) { + v_left = u_left; + v_right = u_right; + u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2]; + if (ch->sample->stereo) { + u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2]; + } else { + u_right = u_left; + }; + }; + ch->sample_position -= ch->step; + if(ch->sample_position <= ch->sample->loop_start) { + ch->ping = true; + ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position; + }; + if (ch->sample_position <= .0f) { + ch->ping = true; + ch->sample_position = .0f; + }; + }; + break; + + default: + v_left = .0f; + v_right = .0f; + break; + }; + + float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left; + float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right; + + if (mod->ramping) { + if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { + /* Smoothly transition between old and new sample. */ + if (previous > -1) { + ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + } else { + ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + }; + }; + }; + + if (previous > -1) { + ch->end_of_previous_sample_left[previous] = endval_left; + ch->end_of_previous_sample_right[previous] = endval_right; + } else { + ch->curr_left = endval_left; + ch->curr_right = endval_right; + }; +}; + +// gather all channel audio into stereo float +static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) { + jar_xm_module_t* mod = &(ctx->module); + + if(ctx->remaining_samples_in_tick <= 0) { + jar_xm_tick(ctx); + }; + ctx->remaining_samples_in_tick--; + *left = 0.f; + *right = 0.f; + if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; } + + for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { + jar_xm_channel_context_t* ch = ctx->channels + i; + if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) { + jar_xm_next_of_sample(ctx, ch, -1); + if(!ch->muted && !ch->instrument->muted) { + *left += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning); + *right += ch->curr_right * ch->actual_volume * ch->actual_panning; + }; + + if (mod->ramping) { + ch->frame_count++; + jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp); + jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp); + }; + }; + }; + if (ctx->global_volume != 1.0f) { + *left *= ctx->global_volume; + *right *= ctx->global_volume; + }; + + // experimental +// float counter = (float)ctx->generated_samples * 0.0001f +// *left = tan(&left + sin(counter)); +// *right = tan(&right + cos(counter)); + + // apply brick wall limiter when audio goes beyond bounderies + if(*left < -1.0) {*left = -1.0;} else if(*left > 1.0) {*left = 1.0;}; + if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;}; +}; + +void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) { + if(ctx && output) { + ctx->generated_samples += numsamples; + for(size_t i = 0; i < numsamples; i++) { + jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1)); + }; + }; +}; + +uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) { + uint64_t total = 0; + uint8_t currentLoopCount = jar_xm_get_loop_count(ctx); + jar_xm_set_max_loop_count(ctx, 0); + while(jar_xm_get_loop_count(ctx) == currentLoopCount) { + total += ctx->remaining_samples_in_tick; + ctx->remaining_samples_in_tick = 0; + jar_xm_tick(ctx); + } + ctx->loop_count = currentLoopCount; + return total; +} + +//-------------------------------------------- +//FILE LOADER - TODO - NEEDS TO BE CLEANED UP +//-------------------------------------------- +#undef DEBUG +#define DEBUG(...) do { \ + fprintf(stderr, __VA_ARGS__); \ + fflush(stderr); \ + } while(0) + +#define DEBUG_ERR(...) do { \ + fprintf(stderr, __VA_ARGS__); \ + fflush(stderr); \ + } while(0) + +#define FATAL(...) do { \ + fprintf(stderr, __VA_ARGS__); \ + fflush(stderr); \ + exit(1); \ + } while(0) + +#define FATAL_ERR(...) do { \ + fprintf(stderr, __VA_ARGS__); \ + fflush(stderr); \ + exit(1); \ + } while(0) + + +int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename) { + FILE* xmf; + int size; + int ret; + + xmf = fopen(filename, "rb"); + if(xmf == NULL) { + DEBUG_ERR("Could not open input file"); + *ctx = NULL; + return 3; + } + + fseek(xmf, 0, SEEK_END); + size = ftell(xmf); + rewind(xmf); + if(size == -1) { + fclose(xmf); + DEBUG_ERR("fseek() failed"); + *ctx = NULL; + return 4; + } + + char* data = JARXM_MALLOC(size + 1); + if(!data || fread(data, 1, size, xmf) < size) { + fclose(xmf); + DEBUG_ERR(data ? "fread() failed" : "JARXM_MALLOC() failed"); + JARXM_FREE(data); + *ctx = NULL; + return 5; + } + + fclose(xmf); + + ret = jar_xm_create_context_safe(ctx, data, size, rate); + JARXM_FREE(data); + + switch(ret) { + case 0: + break; + case 1: DEBUG("could not create context: module is not sane\n"); + *ctx = NULL; + return 1; + break; + case 2: FATAL("could not create context: malloc failed\n"); + return 2; + break; + default: FATAL("could not create context: unknown error\n"); + return 6; + break; + } + + return 0; +} + +// not part of the original library +void jar_xm_reset(jar_xm_context_t* ctx) { + for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { + jar_xm_cut_note(&ctx->channels[i]); + } + ctx->generated_samples = 0; + ctx->current_row = 0; + ctx->current_table_index = 0; + ctx->current_tick = 0; + ctx->tempo =ctx->default_tempo; // reset to file default value + ctx->bpm = ctx->default_bpm; // reset to file default value + ctx->global_volume = ctx->default_global_volume; // reset to file default value +} + + +void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) { + if (ctx->module.linear_interpolation) { + ctx->module.linear_interpolation = 0; + } else { + ctx->module.linear_interpolation = 1; + } +} + +void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) { + for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { + jar_xm_cut_note(&ctx->channels[i]); + } + ctx->current_row = 0; + ctx->current_tick = 0; + if(table_ptr > 0 && table_ptr < ctx->module.length) { + ctx->current_table_index = table_ptr; + ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track + } else { + ctx->current_table_index = 0; + ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track + ctx->tempo =ctx->default_tempo; // reset to file default value + ctx->bpm = ctx->default_bpm; // reset to file default value + ctx->global_volume = ctx->default_global_volume; // reset to file default value + }; +} + + +// TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... ) +const char* xm_note_chr(int number) { + if (number == NOTE_OFF) { + return "=="; + }; + number = number % 12; + switch(number) { + case 1: return "C-"; + case 2: return "C#"; + case 3: return "D-"; + case 4: return "D#"; + case 5: return "E-"; + case 6: return "F-"; + case 7: return "F#"; + case 8: return "G-"; + case 9: return "G#"; + case 10: return "A-"; + case 11: return "A#"; + case 12: return "B-"; + }; + return "??"; +}; + +const char* xm_octave_chr(int number) { + if (number == NOTE_OFF) { + return "="; + }; + + int number2 = number - number % 12; + int result = floor(number2 / 12) + 1; + switch(result) { + case 1: return "1"; + case 2: return "2"; + case 3: return "3"; + case 4: return "4"; + case 5: return "5"; + case 6: return "6"; + case 7: return "7"; + case 8: return "8"; + default: return "?"; /* UNKNOWN */ + }; + +}; + +// TRANSLATE NOTE EFFECT CODE INTO USER VALUE +const char* xm_effect_chr(int fx) { + switch(fx) { + case 0: return "0"; /* ZERO = NO EFFECT */ + case 1: return "1"; /* 1xx: Portamento up */ + case 2: return "2"; /* 2xx: Portamento down */ + case 3: return "3"; /* 3xx: Tone portamento */ + case 4: return "4"; /* 4xy: Vibrato */ + case 5: return "5"; /* 5xy: Tone portamento + Volume slide */ + case 6: return "6"; /* 6xy: Vibrato + Volume slide */ + case 7: return "7"; /* 7xy: Tremolo */ + case 8: return "8"; /* 8xx: Set panning */ + case 9: return "9"; /* 9xx: Sample offset */ + case 0xA: return "A";/* Axy: Volume slide */ + case 0xB: return "B";/* Bxx: Position jump */ + case 0xC: return "C";/* Cxx: Set volume */ + case 0xD: return "D";/* Dxx: Pattern break */ + case 0xE: return "E";/* EXy: Extended command */ + case 0xF: return "F";/* Fxx: Set tempo/BPM */ + case 16: return "G"; /* Gxx: Set global volume */ + case 17: return "H"; /* Hxy: Global volume slide */ + case 21: return "L"; /* Lxx: Set envelope position */ + case 25: return "P"; /* Pxy: Panning slide */ + case 27: return "R"; /* Rxy: Multi retrig note */ + case 29: return "T"; /* Txy: Tremor */ + case 33: return "X"; /* Xxy: Extra stuff */ + default: return "?"; /* UNKNOWN */ + }; +} + +#ifdef JAR_XM_RAYLIB + +#include "raylib.h" // Need RayLib API calls for the DEBUG display + +void jar_xm_debug(jar_xm_context_t *ctx) { + int size=40; + int x = 0, y = 0; + + // DEBUG VARIABLES + y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index), x, y, size, WHITE); + y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]), x, y, size, WHITE); + y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump), x, y, size, WHITE); + y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest), x, y, size, WHITE); + y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break), x, y, size, WHITE); + y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row), x, y, size, WHITE); + y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row), x, y, size, WHITE); + y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count), x, y, size, WHITE); + y += size; DrawText(TextFormat("LCT = %i", ctx->loop_count), x, y, size, WHITE); + y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count), x, y, size, WHITE); + x = size * 12; y = 0; + + y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick), x, y, size, WHITE); + y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks), x, y, size, WHITE); + y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo), x, y, size, ORANGE); + y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE); + y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples), x, y, size, WHITE); + y += size * 7; + + x = 0; + size=16; + // TIMELINE OF MODULE + for (int i=0; i < ctx->module.length; i++) { + if (i == ctx->jump_dest) { + if (ctx->position_jump) { + DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD); + } else { + DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN); + }; + }; + if (i == ctx->current_table_index) { +// DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE); + DrawRectangle(i * size * 2, y, size * 2, size, RED); + DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW); + } else { + DrawRectangle(i * size * 2, y, size * 2, size, ORANGE); + }; + DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE); + }; + y += size; + + jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; + + /* DISPLAY CURRENTLY PLAYING PATTERN */ + + x += 2 * size; + for(uint8_t i = 0; i < ctx->module.num_channels; i++) { + DrawRectangle(x, y, 8 * size, size, PURPLE); + DrawText("N", x, y, size, YELLOW); + DrawText("I", x + size * 2, y, size, YELLOW); + DrawText("V", x + size * 4, y, size, YELLOW); + DrawText("FX", x + size * 6, y, size, YELLOW); + x += 9 * size; + }; + x += size; + for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) { + y += size; + x = 0; + if (j >=0 && j < (cur->num_rows)) { + DrawRectangle(x, y, size * 2, size, BROWN); + DrawText(TextFormat("%02X",j), x, y, size, WHITE); + x += 2 * size; + for(uint8_t i = 0; i < ctx->module.num_channels; i++) { + if (j==(ctx->current_row)) { + DrawRectangle(x, y, 8 * size, size, DARKGREEN); + } else { + DrawRectangle(x, y, 8 * size, size, DARKGRAY); + }; + jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i; + // jar_xm_channel_context_t *ch = ctx->channels + i; + if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);}; + if (s->instrument > 0) { + DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE); + if (s->volume_column == 0) { + DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW); + }; + } else { + DrawText("..", x + size * 2, y, size, GRAY); + if (s->volume_column == 0) { + DrawText("..", x + size * 4, y, size, GRAY); + }; + }; + if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);}; + if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);}; + x += 9 * size; + }; + }; + }; + +} +#endif // RayLib extension + +#endif//end of JAR_XM_IMPLEMENTATION +//------------------------------------------------------------------------------- + +#endif//end of INCLUDE_JAR_XM_H |