summaryrefslogtreecommitdiffstats
path: root/src/raycastlib.cpp
diff options
context:
space:
mode:
authorsalaaad2 <arthurdurant263@gmail.com>2022-05-17 20:58:07 +0200
committersalaaad2 <arthurdurant263@gmail.com>2022-05-17 20:58:07 +0200
commitec8e4eb6320ddaabd71afbda12e93fbdab0d10d0 (patch)
treef9cf6bbdbdc512a258701ed2c0ea8c838d51a6c1 /src/raycastlib.cpp
downloadwatchoom-ec8e4eb6320ddaabd71afbda12e93fbdab0d10d0.tar.gz
watchoom-ec8e4eb6320ddaabd71afbda12e93fbdab0d10d0.tar.bz2
watchoom-ec8e4eb6320ddaabd71afbda12e93fbdab0d10d0.tar.xz
watchoom-ec8e4eb6320ddaabd71afbda12e93fbdab0d10d0.tar.zst
watchoom-ec8e4eb6320ddaabd71afbda12e93fbdab0d10d0.zip
initial commit
Diffstat (limited to 'src/raycastlib.cpp')
-rw-r--r--src/raycastlib.cpp1563
1 files changed, 1563 insertions, 0 deletions
diff --git a/src/raycastlib.cpp b/src/raycastlib.cpp
new file mode 100644
index 0000000..07f1b87
--- /dev/null
+++ b/src/raycastlib.cpp
@@ -0,0 +1,1563 @@
+#include "raycastlib.h"
+
+//=============================================================================
+// privates
+
+#define _RCL_UNUSED(what) (void)(what);
+
+#ifndef RCL_PIXEL_FUNCTION
+#define RCL_PIXEL_FUNCTION pixelFunc
+#endif
+void pixelFunc(RCL_PixelInfo *p);
+
+// global helper variables, for precomputing stuff etc.
+RCL_Camera _RCL_camera;
+RCL_Unit _RCL_horizontalDepthStep = 0;
+RCL_Unit _RCL_startFloorHeight = 0;
+RCL_Unit _RCL_startCeil_Height = 0;
+RCL_Unit _RCL_camResYLimit = 0;
+RCL_Unit _RCL_middleRow = 0;
+RCL_ArrayFunction _RCL_floorFunction = 0;
+RCL_ArrayFunction _RCL_ceilFunction = 0;
+RCL_Unit _RCL_fHorizontalDepthStart = 0;
+RCL_Unit _RCL_cHorizontalDepthStart = 0;
+int16_t _RCL_cameraHeightScreen = 0;
+RCL_ArrayFunction _RCL_rollFunction = 0; // says door rolling
+RCL_Unit *_RCL_floorPixelDistances = 0;
+RCL_Unit _RCL_fovCorrectionFactors[2] = {0,0}; //correction for hor/vert fov
+
+RCL_Unit RCL_clamp(RCL_Unit value, RCL_Unit valueMin, RCL_Unit valueMax)
+{
+ if (value >= valueMin)
+ {
+ if (value <= valueMax)
+ return value;
+ else
+ return valueMax;
+ }
+ else
+ return valueMin;
+}
+
+static inline RCL_Unit RCL_abs(RCL_Unit value)
+{
+ return value * (((value >= 0) << 1) - 1);
+}
+
+/// Like mod, but behaves differently for negative values.
+static inline RCL_Unit RCL_wrap(RCL_Unit value, RCL_Unit mod)
+{
+ RCL_Unit cmp = value < 0;
+ return cmp * mod + (value % mod) - cmp;
+}
+
+/// Performs division, rounding down, NOT towards zero.
+RCL_Unit RCL_divRoundDown(RCL_Unit value, RCL_Unit divisor)
+{
+ return value / divisor - ((value >= 0) ? 0 : 1);
+}
+
+// Bhaskara's cosine approximation formula
+#define trigHelper(x) (((RCL_Unit) RCL_UNITS_PER_SQUARE) *\
+ (RCL_UNITS_PER_SQUARE / 2 * RCL_UNITS_PER_SQUARE / 2 - 4 * (x) * (x)) /\
+ (RCL_UNITS_PER_SQUARE / 2 * RCL_UNITS_PER_SQUARE / 2 + (x) * (x)))
+
+#if RCL_USE_COS_LUT == 1
+
+ #ifdef RCL_RAYCAST_TINY
+ const RCL_Unit cosLUT[64] =
+ {
+ 16,14,11,6,0,-6,-11,-14,-15,-14,-11,-6,0,6,11,14
+ };
+ #else
+ const RCL_Unit cosLUT[64] =
+ {
+ 1024,1019,1004,979,946,903,851,791,724,649,568,482,391,297,199,100,0,-100,
+ -199,-297,-391,-482,-568,-649,-724,-791,-851,-903,-946,-979,-1004,-1019,
+ -1023,-1019,-1004,-979,-946,-903,-851,-791,-724,-649,-568,-482,-391,-297,
+ -199,-100,0,100,199,297,391,482,568,649,724,791,851,903,946,979,1004,1019
+ };
+ #endif
+
+#elif RCL_USE_COS_LUT == 2
+const RCL_Unit cosLUT[128] =
+{
+ 1024,1022,1019,1012,1004,993,979,964,946,925,903,878,851,822,791,758,724,
+ 687,649,609,568,526,482,437,391,344,297,248,199,150,100,50,0,-50,-100,-150,
+ -199,-248,-297,-344,-391,-437,-482,-526,-568,-609,-649,-687,-724,-758,-791,
+ -822,-851,-878,-903,-925,-946,-964,-979,-993,-1004,-1012,-1019,-1022,-1023,
+ -1022,-1019,-1012,-1004,-993,-979,-964,-946,-925,-903,-878,-851,-822,-791,
+ -758,-724,-687,-649,-609,-568,-526,-482,-437,-391,-344,-297,-248,-199,-150,
+ -100,-50,0,50,100,150,199,248,297,344,391,437,482,526,568,609,649,687,724,
+ 758,791,822,851,878,903,925,946,964,979,993,1004,1012,1019,1022
+};
+#endif
+
+RCL_Unit RCL_cos(RCL_Unit input)
+{
+ input = RCL_wrap(input,RCL_UNITS_PER_SQUARE);
+
+#if RCL_USE_COS_LUT == 1
+
+ #ifdef RCL_RAYCAST_TINY
+ return cosLUT[input];
+ #else
+ return cosLUT[input / 16];
+ #endif
+
+#elif RCL_USE_COS_LUT == 2
+ return cosLUT[input / 8];
+#else
+ if (input < RCL_UNITS_PER_SQUARE / 4)
+ return trigHelper(input);
+ else if (input < RCL_UNITS_PER_SQUARE / 2)
+ return -1 * trigHelper(RCL_UNITS_PER_SQUARE / 2 - input);
+ else if (input < 3 * RCL_UNITS_PER_SQUARE / 4)
+ return -1 * trigHelper(input - RCL_UNITS_PER_SQUARE / 2);
+ else
+ return trigHelper(RCL_UNITS_PER_SQUARE - input);
+#endif
+}
+
+#undef trigHelper
+
+RCL_Unit RCL_sin(RCL_Unit input)
+{
+ return RCL_cos(input - RCL_UNITS_PER_SQUARE / 4);
+}
+
+RCL_Unit RCL_tan(RCL_Unit input)
+{
+ return (RCL_sin(input) * RCL_UNITS_PER_SQUARE) / RCL_nonZero(RCL_cos(input)
+);
+
+ return (RCL_sin(input) * RCL_UNITS_PER_SQUARE) / RCL_nonZero(RCL_cos(input));
+}
+
+RCL_Unit RCL_ctg(RCL_Unit input)
+{
+ return (RCL_cos(input) * RCL_UNITS_PER_SQUARE) / RCL_sin(input);
+}
+
+RCL_Vector2D RCL_angleToDirection(RCL_Unit angle)
+{
+ RCL_Vector2D result;
+
+ result.x = RCL_cos(angle);
+ result.y = -1 * RCL_sin(angle);
+
+ return result;
+}
+
+uint16_t RCL_sqrt(RCL_Unit value)
+{
+#ifdef RCL_RAYCAST_TINY
+ uint16_t result = 0;
+ uint16_t a = value;
+ uint16_t b = 1u << 14;
+#else
+ uint32_t result = 0;
+ uint32_t a = value;
+ uint32_t b = 1u << 30;
+#endif
+
+ while (b > a)
+ b >>= 2;
+
+ while (b != 0)
+ {
+ if (a >= result + b)
+ {
+ a -= result + b;
+ result = result + 2 * b;
+ }
+
+ b >>= 2;
+ result >>= 1;
+ }
+
+ return result;
+}
+
+RCL_Unit RCL_dist(RCL_Vector2D p1, RCL_Vector2D p2)
+{
+ RCL_Unit dx = p2.x - p1.x;
+ RCL_Unit dy = p2.y - p1.y;
+
+#if RCL_USE_DIST_APPROX == 2
+ // octagonal approximation
+
+ dx = RCL_abs(dx);
+ dy = RCL_abs(dy);
+
+ return dy > dx ? dx / 2 + dy : dy / 2 + dx;
+#elif RCL_USE_DIST_APPROX == 1
+ // more accurate approximation
+
+ RCL_Unit a, b, result;
+
+ dx = ((dx < 0) * 2 - 1) * dx;
+ dy = ((dy < 0) * 2 - 1) * dy;
+
+ if (dx < dy)
+ {
+ a = dy;
+ b = dx;
+ }
+ else
+ {
+ a = dx;
+ b = dy;
+ }
+
+ result = a + (44 * b) / 102;
+
+ if (a < (b << 4))
+ result -= (5 * a) / 128;
+
+ return result;
+#else
+ dx = dx * dx;
+ dy = dy * dy;
+
+ return RCL_sqrt((RCL_Unit) (dx + dy));
+#endif
+}
+
+RCL_Unit RCL_len(RCL_Vector2D v)
+{
+ RCL_Vector2D zero;
+ zero.x = 0;
+ zero.y = 0;
+
+ return RCL_dist(zero,v);
+}
+
+static inline int8_t RCL_pointIsLeftOfRay(RCL_Vector2D point, RCL_Ray ray)
+{
+ RCL_Unit dX = point.x - ray.start.x;
+ RCL_Unit dY = point.y - ray.start.y;
+ return (ray.direction.x * dY - ray.direction.y * dX) > 0;
+ // ^ Z component of cross-product
+}
+
+void RCL_castRayMultiHit(RCL_Ray ray, RCL_ArrayFunction arrayFunc,
+ RCL_ArrayFunction typeFunc, RCL_HitResult *hitResults,
+ uint16_t *hitResultsLen, RCL_RayConstraints constraints)
+{
+ RCL_Vector2D currentPos = ray.start;
+ RCL_Vector2D currentSquare;
+
+ currentSquare.x = RCL_divRoundDown(ray.start.x,RCL_UNITS_PER_SQUARE);
+ currentSquare.y = RCL_divRoundDown(ray.start.y,RCL_UNITS_PER_SQUARE);
+
+ *hitResultsLen = 0;
+
+ RCL_Unit squareType = arrayFunc(currentSquare.x,currentSquare.y);
+
+ // DDA variables
+ RCL_Vector2D nextSideDist; // dist. from start to the next side in given axis
+ RCL_Vector2D delta;
+ RCL_Vector2D step; // -1 or 1 for each axis
+ int8_t stepHorizontal = 0; // whether the last step was hor. or vert.
+
+ nextSideDist.x = 0;
+ nextSideDist.y = 0;
+
+ RCL_Unit dirVecLengthNorm = RCL_len(ray.direction) * RCL_UNITS_PER_SQUARE;
+
+ delta.x = RCL_abs(dirVecLengthNorm / RCL_nonZero(ray.direction.x));
+ delta.y = RCL_abs(dirVecLengthNorm / RCL_nonZero(ray.direction.y));
+
+ // init DDA
+
+ if (ray.direction.x < 0)
+ {
+ step.x = -1;
+ nextSideDist.x = (RCL_wrap(ray.start.x,RCL_UNITS_PER_SQUARE) * delta.x) /
+ RCL_UNITS_PER_SQUARE;
+ }
+ else
+ {
+ step.x = 1;
+ nextSideDist.x =
+ ((RCL_wrap(RCL_UNITS_PER_SQUARE - ray.start.x,RCL_UNITS_PER_SQUARE)) *
+ delta.x) / RCL_UNITS_PER_SQUARE;
+ }
+
+ if (ray.direction.y < 0)
+ {
+ step.y = -1;
+ nextSideDist.y = (RCL_wrap(ray.start.y,RCL_UNITS_PER_SQUARE) * delta.y) /
+ RCL_UNITS_PER_SQUARE;
+ }
+ else
+ {
+ step.y = 1;
+ nextSideDist.y =
+ ((RCL_wrap(RCL_UNITS_PER_SQUARE - ray.start.y,RCL_UNITS_PER_SQUARE)) *
+ delta.y) / RCL_UNITS_PER_SQUARE;
+ }
+
+ // DDA loop
+
+ #define RECIP_SCALE 65536
+
+ RCL_Unit rayDirXRecip = RECIP_SCALE / RCL_nonZero(ray.direction.x);
+ RCL_Unit rayDirYRecip = RECIP_SCALE / RCL_nonZero(ray.direction.y);
+ // ^ we precompute reciprocals to avoid divisions in the loop
+
+ for (uint16_t i = 0; i < constraints.maxSteps; ++i)
+ {
+ RCL_Unit currentType = arrayFunc(currentSquare.x,currentSquare.y);
+
+ if (RCL_unlikely(currentType != squareType))
+ {
+ // collision
+
+ RCL_HitResult h;
+
+ h.arrayValue = currentType;
+ h.doorRoll = 0;
+ h.position = currentPos;
+ h.square = currentSquare;
+
+ if (stepHorizontal)
+ {
+ h.position.x = currentSquare.x * RCL_UNITS_PER_SQUARE;
+ h.direction = 3;
+
+ if (step.x == -1)
+ {
+ h.direction = 1;
+ h.position.x += RCL_UNITS_PER_SQUARE;
+ }
+
+ RCL_Unit diff = h.position.x - ray.start.x;
+
+ h.position.y = // avoid division by multiplying with reciprocal
+ ray.start.y + (ray.direction.y * diff * rayDirXRecip) / RECIP_SCALE;
+
+#if RCL_RECTILINEAR
+ /* Here we compute the fish eye corrected distance (perpendicular to
+ the projection plane) as the Euclidean distance (of hit from camera
+ position) divided by the length of the ray direction vector. This can
+ be computed without actually computing Euclidean distances as a
+ hypothenuse A (distance) divided by hypothenuse B (length) is equal to
+ leg A (distance along principal axis) divided by leg B (length along
+ the same principal axis). */
+
+#define CORRECT(dir1,dir2)\
+ RCL_Unit tmp = diff / 4; /* 4 to prevent overflow */ \
+ h.distance = ((tmp / 8) != 0) ? /* prevent a bug with small dists */ \
+ ((tmp * RCL_UNITS_PER_SQUARE * rayDir ## dir1 ## Recip) / (RECIP_SCALE / 4)):\
+ RCL_abs(h.position.dir2 - ray.start.dir2);
+
+ CORRECT(X,y)
+
+#endif // RCL_RECTILINEAR
+ }
+ else
+ {
+ h.position.y = currentSquare.y * RCL_UNITS_PER_SQUARE;
+ h.direction = 2;
+
+ if (step.y == -1)
+ {
+ h.direction = 0;
+ h.position.y += RCL_UNITS_PER_SQUARE;
+ }
+
+ RCL_Unit diff = h.position.y - ray.start.y;
+
+ h.position.x =
+ ray.start.x + (ray.direction.x * diff * rayDirYRecip) / RECIP_SCALE;
+
+#if RCL_RECTILINEAR
+
+ CORRECT(Y,x) // same as above but for different axis
+
+#undef CORRECT
+
+#endif // RCL_RECTILINEAR
+ }
+
+#if !RCL_RECTILINEAR
+ h.distance = RCL_dist(h.position,ray.start);
+#endif
+ if (typeFunc != 0)
+ h.type = typeFunc(currentSquare.x,currentSquare.y);
+
+#if RCL_COMPUTE_WALL_TEXCOORDS == 1
+ switch (h.direction)
+ {
+ case 0: h.textureCoord =
+ RCL_wrap(-1 * h.position.x,RCL_UNITS_PER_SQUARE); break;
+
+ case 1: h.textureCoord =
+ RCL_wrap(h.position.y,RCL_UNITS_PER_SQUARE); break;
+
+ case 2: h.textureCoord =
+ RCL_wrap(h.position.x,RCL_UNITS_PER_SQUARE); break;
+
+ case 3: h.textureCoord =
+ RCL_wrap(-1 * h.position.y,RCL_UNITS_PER_SQUARE); break;
+
+ default: h.textureCoord = 0; break;
+ }
+
+ if (_RCL_rollFunction != 0)
+ {
+ h.doorRoll = _RCL_rollFunction(currentSquare.x,currentSquare.y);
+
+ if (h.direction == 0 || h.direction == 1)
+ h.doorRoll *= -1;
+ }
+
+#else
+ h.textureCoord = 0;
+#endif
+
+ hitResults[*hitResultsLen] = h;
+
+ *hitResultsLen += 1;
+
+ squareType = currentType;
+
+ if (*hitResultsLen >= constraints.maxHits)
+ break;
+ }
+
+ // DDA step
+
+ if (nextSideDist.x < nextSideDist.y)
+ {
+ nextSideDist.x += delta.x;
+ currentSquare.x += step.x;
+ stepHorizontal = 1;
+ }
+ else
+ {
+ nextSideDist.y += delta.y;
+ currentSquare.y += step.y;
+ stepHorizontal = 0;
+ }
+ }
+}
+
+RCL_HitResult RCL_castRay(RCL_Ray ray, RCL_ArrayFunction arrayFunc)
+{
+ RCL_HitResult result;
+ uint16_t len;
+ RCL_RayConstraints c;
+
+ c.maxSteps = 1000;
+ c.maxHits = 1;
+
+ RCL_castRayMultiHit(ray,arrayFunc,0,&result,&len,c);
+
+ if (len == 0)
+ result.distance = -1;
+
+ return result;
+}
+
+void RCL_castRaysMultiHit(RCL_Camera cam, RCL_ArrayFunction arrayFunc,
+ RCL_ArrayFunction typeFunction, RCL_ColumnFunction columnFunc,
+ RCL_RayConstraints constraints)
+{
+ RCL_Vector2D dir1 =
+ RCL_angleToDirection(cam.direction - RCL_HORIZONTAL_FOV_HALF);
+
+ RCL_Vector2D dir2 =
+ RCL_angleToDirection(cam.direction + RCL_HORIZONTAL_FOV_HALF);
+
+ /* We scale the side distances so that the middle one is
+ RCL_UNITS_PER_SQUARE, which has to be this way. */
+
+ RCL_Unit cos = RCL_nonZero(RCL_cos(RCL_HORIZONTAL_FOV_HALF));
+
+ dir1.x = (dir1.x * RCL_UNITS_PER_SQUARE) / cos;
+ dir1.y = (dir1.y * RCL_UNITS_PER_SQUARE) / cos;
+
+ dir2.x = (dir2.x * RCL_UNITS_PER_SQUARE) / cos;
+ dir2.y = (dir2.y * RCL_UNITS_PER_SQUARE) / cos;
+
+ RCL_Unit dX = dir2.x - dir1.x;
+ RCL_Unit dY = dir2.y - dir1.y;
+
+ RCL_HitResult hits[constraints.maxHits];
+ uint16_t hitCount;
+
+ RCL_Ray r;
+ r.start = cam.position;
+
+ RCL_Unit currentDX = 0;
+ RCL_Unit currentDY = 0;
+
+ for (int16_t i = 0; i < cam.resolution.x; ++i)
+ {
+ /* Here by linearly interpolating the direction vector its length changes,
+ which in result achieves correcting the fish eye effect (computing
+ perpendicular distance). */
+
+ r.direction.x = dir1.x + currentDX / cam.resolution.x;
+ r.direction.y = dir1.y + currentDY / cam.resolution.x;
+
+ RCL_castRayMultiHit(r,arrayFunc,typeFunction,hits,&hitCount,constraints);
+
+ columnFunc(hits,hitCount,i,r);
+
+ currentDX += dX;
+ currentDY += dY;
+ }
+}
+
+/**
+ Helper function that determines intersection with both ceiling and floor.
+*/
+RCL_Unit _RCL_floorCeilFunction(int16_t x, int16_t y)
+{
+ RCL_Unit f = _RCL_floorFunction(x,y);
+
+ if (_RCL_ceilFunction == 0)
+ return f;
+
+ RCL_Unit c = _RCL_ceilFunction(x,y);
+
+#ifndef RCL_RAYCAST_TINY
+ return ((f & 0x0000ffff) << 16) | (c & 0x0000ffff);
+#else
+ return ((f & 0x00ff) << 8) | (c & 0x00ff);
+#endif
+}
+
+RCL_Unit _floorHeightNotZeroFunction(int16_t x, int16_t y)
+{
+ return _RCL_floorFunction(x,y) == 0 ? 0 :
+ RCL_nonZero((x & 0x00FF) | ((y & 0x00FF) << 8));
+ // ^ this makes collisions between all squares - needed for rolling doors
+}
+
+RCL_Unit RCL_adjustDistance(RCL_Unit distance, RCL_Camera *camera,
+ RCL_Ray *ray)
+{
+ /* FIXME/TODO: The adjusted (=orthogonal, camera-space) distance could
+ possibly be computed more efficiently by not computing Euclidean
+ distance at all, but rather compute the distance of the collision
+ point from the projection plane (line). */
+
+ RCL_Unit result =
+ (distance *
+ RCL_vectorsAngleCos(RCL_angleToDirection(camera->direction),
+ ray->direction)) / RCL_UNITS_PER_SQUARE;
+
+ return RCL_nonZero(result);
+ // ^ prevent division by zero
+}
+
+/// Helper for drawing floor or ceiling. Returns the last drawn pixel position.
+static inline int16_t _RCL_drawHorizontalColumn(
+ RCL_Unit yCurrent,
+ RCL_Unit yTo,
+ RCL_Unit limit1, // TODO: int16_t?
+ RCL_Unit limit2,
+ RCL_Unit verticalOffset,
+ int16_t increment,
+ int8_t computeDepth,
+ int8_t computeCoords,
+ int16_t depthIncrementMultiplier,
+ RCL_Ray *ray,
+ RCL_PixelInfo *pixelInfo
+)
+{
+ _RCL_UNUSED(ray);
+
+ RCL_Unit depthIncrement;
+ RCL_Unit dx;
+ RCL_Unit dy;
+
+ pixelInfo->isWall = 0;
+
+ int16_t limit = RCL_clamp(yTo,limit1,limit2);
+
+ RCL_Unit depth = 0; /* TODO: this is for clamping depth to 0 so that we don't
+ have negative depths, but we should do it more
+ elegantly and efficiently */
+
+ _RCL_UNUSED(depth);
+
+ /* for performance reasons have different version of the critical loop
+ to be able to branch early */
+ #define loop(doDepth,doCoords)\
+ {\
+ if (doDepth) /*constant condition - compiler should optimize it out*/\
+ {\
+ depth = pixelInfo->depth + RCL_abs(verticalOffset) *\
+ RCL_VERTICAL_DEPTH_MULTIPLY;\
+ depthIncrement = depthIncrementMultiplier *\
+ _RCL_horizontalDepthStep;\
+ }\
+ if (doCoords) /*constant condition - compiler should optimize it out*/\
+ {\
+ dx = pixelInfo->hit.position.x - _RCL_camera.position.x;\
+ dy = pixelInfo->hit.position.y - _RCL_camera.position.y;\
+ }\
+ for (int16_t i = yCurrent + increment;\
+ increment == -1 ? i >= limit : i <= limit; /* TODO: is efficient? */\
+ i += increment)\
+ {\
+ pixelInfo->position.y = i;\
+ if (doDepth) /*constant condition - compiler should optimize it out*/\
+ {\
+ depth += depthIncrement;\
+ pixelInfo->depth = RCL_zeroClamp(depth); \
+ /* ^ int comparison is fast, it is not braching! (= test instr.) */\
+ }\
+ if (doCoords) /*constant condition - compiler should optimize it out*/\
+ {\
+ RCL_Unit d = _RCL_floorPixelDistances[i];\
+ RCL_Unit d2 = RCL_nonZero(pixelInfo->hit.distance);\
+ pixelInfo->texCoords.x =\
+ _RCL_camera.position.x + ((d * dx) / d2);\
+ pixelInfo->texCoords.y =\
+ _RCL_camera.position.y + ((d * dy) / d2);\
+ }\
+ RCL_PIXEL_FUNCTION(pixelInfo);\
+ }\
+ }
+
+ if (computeDepth) // branch early
+ {
+ if (!computeCoords)
+ loop(1,0)
+ else
+ loop(1,1)
+ }
+ else
+ {
+ if (!computeCoords)
+ loop(0,0)
+ else
+ loop(1,1)
+ }
+
+ #undef loop
+
+ return limit;
+}
+
+/// Helper for drawing walls. Returns the last drawn pixel position.
+static inline int16_t _RCL_drawWall(
+ RCL_Unit yCurrent,
+ RCL_Unit yFrom,
+ RCL_Unit yTo,
+ RCL_Unit limit1, // TODO: int16_t?
+ RCL_Unit limit2,
+ RCL_Unit height,
+ int16_t increment,
+ RCL_PixelInfo *pixelInfo
+ )
+{
+ _RCL_UNUSED(height)
+
+ height = RCL_abs(height);
+
+ pixelInfo->isWall = 1;
+
+ RCL_Unit limit = RCL_clamp(yTo,limit1,limit2);
+
+ RCL_Unit wallLength = RCL_nonZero(RCL_abs(yTo - yFrom - 1));
+
+ RCL_Unit wallPosition = RCL_abs(yFrom - yCurrent) - increment;
+
+ RCL_Unit heightScaled = height * RCL_TEXTURE_INTERPOLATION_SCALE;
+ _RCL_UNUSED(heightScaled);
+
+ RCL_Unit coordStepScaled = RCL_COMPUTE_WALL_TEXCOORDS ?
+#if RCL_TEXTURE_VERTICAL_STRETCH == 1
+ ((RCL_UNITS_PER_SQUARE * RCL_TEXTURE_INTERPOLATION_SCALE) / wallLength)
+#else
+ (heightScaled / wallLength)
+#endif
+ : 0;
+
+ pixelInfo->texCoords.y = RCL_COMPUTE_WALL_TEXCOORDS ?
+ (wallPosition * coordStepScaled) : 0;
+
+ if (increment < 0)
+ {
+ coordStepScaled *= -1;
+ pixelInfo->texCoords.y =
+#if RCL_TEXTURE_VERTICAL_STRETCH == 1
+ (RCL_UNITS_PER_SQUARE * RCL_TEXTURE_INTERPOLATION_SCALE)
+ - pixelInfo->texCoords.y;
+#else
+ heightScaled - pixelInfo->texCoords.y;
+#endif
+ }
+ else
+ {
+ // with floor wall, don't start under 0
+ pixelInfo->texCoords.y = RCL_zeroClamp(pixelInfo->texCoords.y);
+ }
+
+ RCL_Unit textureCoordScaled = pixelInfo->texCoords.y;
+
+ for (RCL_Unit i = yCurrent + increment;
+ increment == -1 ? i >= limit : i <= limit; // TODO: is efficient?
+ i += increment)
+ {
+ pixelInfo->position.y = i;
+
+#if RCL_COMPUTE_WALL_TEXCOORDS == 1
+ pixelInfo->texCoords.y =
+ textureCoordScaled / RCL_TEXTURE_INTERPOLATION_SCALE;
+
+ textureCoordScaled += coordStepScaled;
+#endif
+
+ RCL_PIXEL_FUNCTION(pixelInfo);
+ }
+
+ return limit;
+}
+
+/// Fills a RCL_HitResult struct with info for a hit at infinity.
+static inline void _RCL_makeInfiniteHit(RCL_HitResult *hit, RCL_Ray *ray)
+{
+ hit->distance = RCL_UNITS_PER_SQUARE * RCL_UNITS_PER_SQUARE;
+ /* ^ horizon is at infinity, but we can't use too big infinity
+ (RCL_INFINITY) because it would overflow in the following mult. */
+ hit->position.x = (ray->direction.x * hit->distance) / RCL_UNITS_PER_SQUARE;
+ hit->position.y = (ray->direction.y * hit->distance) / RCL_UNITS_PER_SQUARE;
+
+ hit->direction = 0;
+ hit->textureCoord = 0;
+ hit->arrayValue = 0;
+ hit->doorRoll = 0;
+ hit->type = 0;
+}
+
+void _RCL_columnFunctionComplex(RCL_HitResult *hits, uint16_t hitCount, uint16_t x,
+ RCL_Ray ray)
+{
+ // last written Y position, can never go backwards
+ RCL_Unit fPosY = _RCL_camera.resolution.y;
+ RCL_Unit cPosY = -1;
+
+ // world coordinates (relative to camera height though)
+ RCL_Unit fZ1World = _RCL_startFloorHeight;
+ RCL_Unit cZ1World = _RCL_startCeil_Height;
+
+ RCL_PixelInfo p;
+ p.position.x = x;
+ p.height = 0;
+ p.wallHeight = 0;
+ p.texCoords.x = 0;
+ p.texCoords.y = 0;
+
+ // we'll be simulatenously drawing the floor and the ceiling now
+ for (RCL_Unit j = 0; j <= hitCount; ++j)
+ { // ^ = add extra iteration for horizon plane
+ int8_t drawingHorizon = j == hitCount;
+
+ RCL_HitResult hit;
+ RCL_Unit distance = 1;
+
+ RCL_Unit fWallHeight = 0, cWallHeight = 0;
+ RCL_Unit fZ2World = 0, cZ2World = 0;
+ RCL_Unit fZ1Screen = 0, cZ1Screen = 0;
+ RCL_Unit fZ2Screen = 0, cZ2Screen = 0;
+
+ if (!drawingHorizon)
+ {
+ hit = hits[j];
+ distance = RCL_nonZero(hit.distance);
+ p.hit = hit;
+
+ fWallHeight = _RCL_floorFunction(hit.square.x,hit.square.y);
+ fZ2World = fWallHeight - _RCL_camera.height;
+ fZ1Screen = _RCL_middleRow - RCL_perspectiveScaleVertical(
+ (fZ1World * _RCL_camera.resolution.y) /
+ RCL_UNITS_PER_SQUARE,distance);
+ fZ2Screen = _RCL_middleRow - RCL_perspectiveScaleVertical(
+ (fZ2World * _RCL_camera.resolution.y) /
+ RCL_UNITS_PER_SQUARE,distance);
+
+ if (_RCL_ceilFunction != 0)
+ {
+ cWallHeight = _RCL_ceilFunction(hit.square.x,hit.square.y);
+ cZ2World = cWallHeight - _RCL_camera.height;
+ cZ1Screen = _RCL_middleRow - RCL_perspectiveScaleVertical(
+ (cZ1World * _RCL_camera.resolution.y) /
+ RCL_UNITS_PER_SQUARE,distance);
+ cZ2Screen = _RCL_middleRow - RCL_perspectiveScaleVertical(
+ (cZ2World * _RCL_camera.resolution.y) /
+ RCL_UNITS_PER_SQUARE,distance);
+ }
+ }
+ else
+ {
+ fZ1Screen = _RCL_middleRow;
+ cZ1Screen = _RCL_middleRow + 1;
+ _RCL_makeInfiniteHit(&p.hit,&ray);
+ }
+
+ RCL_Unit limit;
+
+ p.isWall = 0;
+ p.isHorizon = drawingHorizon;
+
+ // draw floor until wall
+ p.isFloor = 1;
+ p.height = fZ1World + _RCL_camera.height;
+ p.wallHeight = 0;
+
+#if RCL_COMPUTE_FLOOR_DEPTH == 1
+ p.depth = (_RCL_fHorizontalDepthStart - fPosY) * _RCL_horizontalDepthStep;
+#else
+ p.depth = 0;
+#endif
+
+ limit = _RCL_drawHorizontalColumn(fPosY,fZ1Screen,cPosY + 1,
+ _RCL_camera.resolution.y,fZ1World,-1,RCL_COMPUTE_FLOOR_DEPTH,
+ // ^ purposfully allow outside screen bounds
+ RCL_COMPUTE_FLOOR_TEXCOORDS && p.height == RCL_FLOOR_TEXCOORDS_HEIGHT,
+ 1,&ray,&p);
+
+ if (fPosY > limit)
+ fPosY = limit;
+
+ if (_RCL_ceilFunction != 0 || drawingHorizon)
+ {
+ // draw ceiling until wall
+ p.isFloor = 0;
+ p.height = cZ1World + _RCL_camera.height;
+
+#if RCL_COMPUTE_CEILING_DEPTH == 1
+ p.depth = (cPosY - _RCL_cHorizontalDepthStart) *
+ _RCL_horizontalDepthStep;
+#endif
+
+ limit = _RCL_drawHorizontalColumn(cPosY,cZ1Screen,
+ -1,fPosY - 1,cZ1World,1,RCL_COMPUTE_CEILING_DEPTH,0,1,&ray,&p);
+ // ^ purposfully allow outside screen bounds here
+
+ if (cPosY < limit)
+ cPosY = limit;
+ }
+
+ if (!drawingHorizon) // don't draw walls for horizon plane
+ {
+ p.isWall = 1;
+ p.depth = distance;
+ p.isFloor = 1;
+ p.texCoords.x = hit.textureCoord;
+ p.height = fZ1World + _RCL_camera.height;
+ p.wallHeight = fWallHeight;
+
+ // draw floor wall
+
+ if (fPosY > 0) // still pixels left?
+ {
+ p.isFloor = 1;
+
+ limit = _RCL_drawWall(fPosY,fZ1Screen,fZ2Screen,cPosY + 1,
+ _RCL_camera.resolution.y,
+ // ^ purposfully allow outside screen bounds here
+#if RCL_TEXTURE_VERTICAL_STRETCH == 1
+ RCL_UNITS_PER_SQUARE
+#else
+ fZ2World - fZ1World
+#endif
+ ,-1,&p);
+
+
+ if (fPosY > limit)
+ fPosY = limit;
+
+ fZ1World = fZ2World; // for the next iteration
+ } // ^ purposfully allow outside screen bounds here
+
+ // draw ceiling wall
+
+ if (_RCL_ceilFunction != 0 && cPosY < _RCL_camResYLimit) // pixels left?
+ {
+ p.isFloor = 0;
+ p.height = cZ1World + _RCL_camera.height;
+ p.wallHeight = cWallHeight;
+
+ limit = _RCL_drawWall(cPosY,cZ1Screen,cZ2Screen,
+ -1,fPosY - 1,
+ // ^ puposfully allow outside screen bounds here
+#if RCL_TEXTURE_VERTICAL_STRETCH == 1
+ RCL_UNITS_PER_SQUARE
+#else
+ cZ1World - cZ2World
+#endif
+ ,1,&p);
+
+ if (cPosY < limit)
+ cPosY = limit;
+
+ cZ1World = cZ2World; // for the next iteration
+ } // ^ puposfully allow outside screen bounds here
+ }
+ }
+}
+
+void _RCL_columnFunctionSimple(RCL_HitResult *hits, uint16_t hitCount,
+ uint16_t x, RCL_Ray ray)
+{
+ RCL_Unit y = 0;
+ RCL_Unit wallHeightScreen = 0;
+ RCL_Unit wallStart = _RCL_middleRow;
+
+ RCL_Unit dist = 1;
+
+ RCL_PixelInfo p;
+ p.position.x = x;
+ p.wallHeight = RCL_UNITS_PER_SQUARE;
+
+ if (hitCount > 0)
+ {
+ RCL_HitResult hit = hits[0];
+
+ uint8_t goOn = 1;
+
+ if (_RCL_rollFunction != 0 && RCL_COMPUTE_WALL_TEXCOORDS == 1)
+ {
+ if (hit.arrayValue == 0)
+ {
+ // standing inside door square, looking out => move to the next hit
+
+ if (hitCount > 1)
+ hit = hits[1];
+ else
+ goOn = 0;
+ }
+ else
+ {
+ // normal hit, check the door roll
+
+ RCL_Unit texCoordMod = hit.textureCoord % RCL_UNITS_PER_SQUARE;
+
+ int8_t unrolled = hit.doorRoll >= 0 ?
+ (hit.doorRoll > texCoordMod) :
+ (texCoordMod > RCL_UNITS_PER_SQUARE + hit.doorRoll);
+
+ if (unrolled)
+ {
+ goOn = 0;
+
+ if (hitCount > 1) /* should probably always be true (hit on square
+ exit) */
+ {
+ if (hit.direction % 2 != hits[1].direction % 2)
+ {
+ // hit on the inner side
+ hit = hits[1];
+ goOn = 1;
+ }
+ else if (hitCount > 2)
+ {
+ // hit on the opposite side
+ hit = hits[2];
+ goOn = 1;
+ }
+ }
+ }
+ }
+ }
+
+ p.hit = hit;
+
+ if (goOn)
+ {
+ dist = hit.distance;
+
+ RCL_Unit wallHeightWorld = _RCL_floorFunction(hit.square.x,hit.square.y);
+
+ if (wallHeightWorld < 0)
+ {
+ /* We can't just do wallHeightWorld = max(0,wallHeightWorld) because
+ we would be processing an actual hit with height 0, which shouldn't
+ ever happen, so we assign some arbitrary height. */
+
+ wallHeightWorld = RCL_UNITS_PER_SQUARE;
+ }
+
+ RCL_Unit worldPointTop = wallHeightWorld - _RCL_camera.height;
+ RCL_Unit worldPointBottom = -1 * _RCL_camera.height;
+
+ wallStart = _RCL_middleRow -
+ (RCL_perspectiveScaleVertical(worldPointTop,dist)
+ * _RCL_camera.resolution.y) / RCL_UNITS_PER_SQUARE;
+
+ int16_t wallEnd = _RCL_middleRow -
+ (RCL_perspectiveScaleVertical(worldPointBottom,dist)
+ * _RCL_camera.resolution.y) / RCL_UNITS_PER_SQUARE;
+
+ wallHeightScreen = wallEnd - wallStart;
+
+ if (wallHeightScreen <= 0) // can happen because of rounding errors
+ wallHeightScreen = 1;
+ }
+ }
+ else
+ {
+ _RCL_makeInfiniteHit(&p.hit,&ray);
+ }
+
+ // draw ceiling
+
+ p.isWall = 0;
+ p.isFloor = 0;
+ p.isHorizon = 1;
+ p.depth = 1;
+ p.height = RCL_UNITS_PER_SQUARE;
+
+ y = _RCL_drawHorizontalColumn(-1,wallStart,-1,_RCL_middleRow,_RCL_camera.height,1,
+ RCL_COMPUTE_CEILING_DEPTH,0,1,&ray,&p);
+
+ // draw wall
+
+ p.isWall = 1;
+ p.isFloor = 1;
+ p.depth = dist;
+ p.height = 0;
+
+#if RCL_ROLL_TEXTURE_COORDS == 1 && RCL_COMPUTE_WALL_TEXCOORDS == 1
+ p.hit.textureCoord -= p.hit.doorRoll;
+#endif
+
+ p.texCoords.x = p.hit.textureCoord;
+ p.texCoords.y = 0;
+
+ RCL_Unit limit = _RCL_drawWall(y,wallStart,wallStart + wallHeightScreen - 1,
+ -1,_RCL_camResYLimit,p.hit.arrayValue,1,&p);
+
+ y = RCL_max(y,limit); // take max, in case no wall was drawn
+ y = RCL_max(y,wallStart);
+
+ // draw floor
+
+ p.isWall = 0;
+
+#if RCL_COMPUTE_FLOOR_DEPTH == 1
+ p.depth = (_RCL_camera.resolution.y - y) * _RCL_horizontalDepthStep + 1;
+#endif
+
+ _RCL_drawHorizontalColumn(y,_RCL_camResYLimit,-1,_RCL_camResYLimit,
+ _RCL_camera.height,1,RCL_COMPUTE_FLOOR_DEPTH,RCL_COMPUTE_FLOOR_TEXCOORDS,
+ -1,&ray,&p);
+}
+
+/**
+ Precomputes a distance from camera to the floor at each screen row into an
+ array (must be preallocated with sufficient (camera.resolution.y) length).
+*/
+static inline void _RCL_precomputeFloorDistances(RCL_Camera camera,
+ RCL_Unit *dest, uint16_t startIndex)
+{
+ RCL_Unit camHeightScreenSize =
+ (camera.height * camera.resolution.y) / RCL_UNITS_PER_SQUARE;
+
+ for (uint16_t i = startIndex; i < camera.resolution.y; ++i)
+ dest[i] = RCL_perspectiveScaleVerticalInverse(camHeightScreenSize,
+ RCL_abs(i - _RCL_middleRow));
+}
+
+void RCL_renderComplex(RCL_Camera cam, RCL_ArrayFunction floorHeightFunc,
+ RCL_ArrayFunction ceilingHeightFunc, RCL_ArrayFunction typeFunction,
+ RCL_RayConstraints constraints)
+{
+ _RCL_floorFunction = floorHeightFunc;
+ _RCL_ceilFunction = ceilingHeightFunc;
+ _RCL_camera = cam;
+ _RCL_camResYLimit = cam.resolution.y - 1;
+
+ uint16_t halfResY = cam.resolution.y / 2;
+
+ _RCL_middleRow = halfResY + cam.shear;
+
+ _RCL_fHorizontalDepthStart = _RCL_middleRow + halfResY;
+ _RCL_cHorizontalDepthStart = _RCL_middleRow - halfResY;
+
+ _RCL_startFloorHeight = floorHeightFunc(
+ RCL_divRoundDown(cam.position.x,RCL_UNITS_PER_SQUARE),
+ RCL_divRoundDown(cam.position.y,RCL_UNITS_PER_SQUARE)) -1 * cam.height;
+
+ _RCL_startCeil_Height =
+ ceilingHeightFunc != 0 ?
+ ceilingHeightFunc(
+ RCL_divRoundDown(cam.position.x,RCL_UNITS_PER_SQUARE),
+ RCL_divRoundDown(cam.position.y,RCL_UNITS_PER_SQUARE)) -1 * cam.height
+ : RCL_INFINITY;
+
+ _RCL_horizontalDepthStep = RCL_HORIZON_DEPTH / cam.resolution.y;
+
+#if RCL_COMPUTE_FLOOR_TEXCOORDS == 1
+ RCL_Unit floorPixelDistances[cam.resolution.y];
+ _RCL_precomputeFloorDistances(cam,floorPixelDistances,0);
+ _RCL_floorPixelDistances = floorPixelDistances; // pass to column function
+#endif
+
+ RCL_castRaysMultiHit(cam,_RCL_floorCeilFunction,typeFunction,
+ _RCL_columnFunctionComplex,constraints);
+}
+
+void RCL_renderSimple(RCL_Camera cam, RCL_ArrayFunction floorHeightFunc,
+ RCL_ArrayFunction typeFunc, RCL_ArrayFunction rollFunc,
+ RCL_RayConstraints constraints)
+{
+ _RCL_floorFunction = floorHeightFunc;
+ _RCL_camera = cam;
+ _RCL_camResYLimit = cam.resolution.y - 1;
+ _RCL_middleRow = cam.resolution.y / 2;
+ _RCL_rollFunction = rollFunc;
+
+ _RCL_cameraHeightScreen =
+ (_RCL_camera.resolution.y * (_RCL_camera.height - RCL_UNITS_PER_SQUARE)) /
+ RCL_UNITS_PER_SQUARE;
+
+ _RCL_horizontalDepthStep = RCL_HORIZON_DEPTH / cam.resolution.y;
+
+ constraints.maxHits =
+ _RCL_rollFunction == 0 ?
+ 1 : // no door => 1 hit is enough
+ 3; // for correctly rendering rolling doors we'll need 3 hits (NOT 2)
+
+#if RCL_COMPUTE_FLOOR_TEXCOORDS == 1
+ RCL_Unit floorPixelDistances[cam.resolution.y];
+ _RCL_precomputeFloorDistances(cam,floorPixelDistances,_RCL_middleRow);
+ _RCL_floorPixelDistances = floorPixelDistances; // pass to column function
+#endif
+
+ RCL_castRaysMultiHit(cam,_floorHeightNotZeroFunction,typeFunc,
+ _RCL_columnFunctionSimple, constraints);
+
+#if RCL_COMPUTE_FLOOR_TEXCOORDS == 1
+ _RCL_floorPixelDistances = 0;
+#endif
+}
+
+RCL_Vector2D RCL_normalize(RCL_Vector2D v)
+{
+ RCL_Vector2D result;
+ RCL_Unit l = RCL_len(v);
+ l = RCL_nonZero(l);
+
+ result.x = (v.x * RCL_UNITS_PER_SQUARE) / l;
+ result.y = (v.y * RCL_UNITS_PER_SQUARE) / l;
+
+ return result;
+}
+
+RCL_Unit RCL_vectorsAngleCos(RCL_Vector2D v1, RCL_Vector2D v2)
+{
+ v1 = RCL_normalize(v1);
+ v2 = RCL_normalize(v2);
+
+ return (v1.x * v2.x + v1.y * v2.y) / RCL_UNITS_PER_SQUARE;
+}
+
+
+RCL_PixelInfo RCL_mapToScreen(RCL_Vector2D worldPosition, RCL_Unit height,
+ RCL_Camera camera)
+{
+ RCL_PixelInfo result;
+
+ RCL_Vector2D toPoint;
+
+ toPoint.x = worldPosition.x - camera.position.x;
+ toPoint.y = worldPosition.y - camera.position.y;
+
+ RCL_Unit middleColumn = camera.resolution.x / 2;
+
+ // rotate the point to camera space (y left/right, x forw/backw)
+
+ RCL_Unit cos = RCL_cos(camera.direction);
+ RCL_Unit sin = RCL_sin(camera.direction);
+
+ RCL_Unit tmp = toPoint.x;
+
+ toPoint.x = (toPoint.x * cos - toPoint.y * sin) / RCL_UNITS_PER_SQUARE;
+ toPoint.y = (tmp * sin + toPoint.y * cos) / RCL_UNITS_PER_SQUARE;
+
+ result.depth = toPoint.x;
+
+ result.position.x = middleColumn -
+ (RCL_perspectiveScaleHorizontal(toPoint.y,result.depth) * middleColumn) /
+ RCL_UNITS_PER_SQUARE;
+
+ result.position.y =
+ (RCL_perspectiveScaleVertical(height - camera.height,result.depth)
+ * camera.resolution.y) / RCL_UNITS_PER_SQUARE;
+
+ result.position.y = camera.resolution.y / 2 - result.position.y + camera.shear;
+
+ return result;
+}
+
+RCL_Unit RCL_degreesToUnitsAngle(int16_t degrees)
+{
+ return (degrees * RCL_UNITS_PER_SQUARE) / 360;
+}
+
+/**
+ Ugly temporary hack to solve mapping to screen. This function computes
+ (approximately, usin a table) a divisor needed for FOV correction.
+*/
+RCL_Unit _RCL_fovCorrectionFactor(RCL_Unit fov)
+{
+ uint16_t table[9] =
+ {1,208,408,692,1024,1540,2304,5376,30000};
+
+ fov = RCL_min(RCL_UNITS_PER_SQUARE / 2 - 1,fov);
+
+ uint8_t index = fov / 64;
+ uint32_t t = ((fov - index * 64) * RCL_UNITS_PER_SQUARE) / 64;
+ uint32_t v1 = table[index];
+ uint32_t v2 = table[index + 1];
+
+ return v1 + ((v2 - v1) * t) / RCL_UNITS_PER_SQUARE;
+}
+
+RCL_Unit RCL_perspectiveScaleVertical(RCL_Unit originalSize, RCL_Unit distance)
+{
+ if (_RCL_fovCorrectionFactors[1] == 0)
+ _RCL_fovCorrectionFactors[1] = _RCL_fovCorrectionFactor(RCL_VERTICAL_FOV);
+
+ return distance != 0 ? ((originalSize * RCL_UNITS_PER_SQUARE) /
+ RCL_nonZero((_RCL_fovCorrectionFactors[1] * distance) / RCL_UNITS_PER_SQUARE)
+ ) : 0;
+}
+
+RCL_Unit RCL_perspectiveScaleVerticalInverse(RCL_Unit originalSize,
+ RCL_Unit scaledSize)
+{
+ if (_RCL_fovCorrectionFactors[1] == 0)
+ _RCL_fovCorrectionFactors[1] = _RCL_fovCorrectionFactor(RCL_VERTICAL_FOV);
+
+ return scaledSize != 0 ?
+
+ ((originalSize * RCL_UNITS_PER_SQUARE) /
+ RCL_nonZero((_RCL_fovCorrectionFactors[1] * scaledSize)
+ / RCL_UNITS_PER_SQUARE)) : RCL_INFINITY;
+}
+
+RCL_Unit
+ RCL_perspectiveScaleHorizontal(RCL_Unit originalSize, RCL_Unit distance)
+{
+ if (_RCL_fovCorrectionFactors[0] == 0)
+ _RCL_fovCorrectionFactors[0] = _RCL_fovCorrectionFactor(RCL_HORIZONTAL_FOV);
+
+ return distance != 0 ?
+ ((originalSize * RCL_UNITS_PER_SQUARE) /
+ RCL_nonZero((_RCL_fovCorrectionFactors[0] * distance) / RCL_UNITS_PER_SQUARE)
+ ) : 0;
+}
+
+RCL_Unit RCL_perspectiveScaleHorizontalInverse(RCL_Unit originalSize,
+ RCL_Unit scaledSize)
+{
+ // TODO: probably doesn't work
+
+ return scaledSize != 0 ?
+ (originalSize * RCL_UNITS_PER_SQUARE + RCL_UNITS_PER_SQUARE / 2) /
+ ((RCL_HORIZONTAL_FOV_TAN * 2 * scaledSize) / RCL_UNITS_PER_SQUARE)
+ : RCL_INFINITY;
+}
+
+RCL_Unit RCL_castRay3D(
+ RCL_Vector2D pos1, RCL_Unit height1, RCL_Vector2D pos2, RCL_Unit height2,
+ RCL_ArrayFunction floorHeightFunc, RCL_ArrayFunction ceilingHeightFunc,
+ RCL_RayConstraints constraints)
+{
+ RCL_HitResult hits[constraints.maxHits];
+ uint16_t numHits;
+
+ RCL_Ray ray;
+
+ ray.start = pos1;
+
+ RCL_Unit distance;
+
+ ray.direction.x = pos2.x - pos1.x;
+ ray.direction.y = pos2.y - pos1.y;
+
+ distance = RCL_len(ray.direction);
+
+ ray.direction = RCL_normalize(ray.direction);
+
+ RCL_Unit heightDiff = height2 - height1;
+
+ RCL_castRayMultiHit(ray,floorHeightFunc,0,hits,&numHits,constraints);
+
+ RCL_Unit result = RCL_UNITS_PER_SQUARE;
+
+ int16_t squareX = RCL_divRoundDown(pos1.x,RCL_UNITS_PER_SQUARE);
+ int16_t squareY = RCL_divRoundDown(pos1.y,RCL_UNITS_PER_SQUARE);
+
+ RCL_Unit startHeight = floorHeightFunc(squareX,squareY);
+
+ #define checkHits(comp,res) \
+ { \
+ RCL_Unit currentHeight = startHeight; \
+ for (uint16_t i = 0; i < numHits; ++i) \
+ { \
+ if (hits[i].distance > distance) \
+ break;\
+ RCL_Unit h = hits[i].arrayValue; \
+ if ((currentHeight comp h ? currentHeight : h) \
+ comp (height1 + (hits[i].distance * heightDiff) / distance)) \
+ { \
+ res = (hits[i].distance * RCL_UNITS_PER_SQUARE) / distance; \
+ break; \
+ } \
+ currentHeight = h; \
+ } \
+ }
+
+ checkHits(>,result)
+
+ if (ceilingHeightFunc != 0)
+ {
+ RCL_Unit result2 = RCL_UNITS_PER_SQUARE;
+
+ startHeight = ceilingHeightFunc(squareX,squareY);
+
+ RCL_castRayMultiHit(ray,ceilingHeightFunc,0,hits,&numHits,constraints);
+
+ checkHits(<,result2)
+
+ if (result2 < result)
+ result = result2;
+ }
+
+ #undef checkHits
+
+ return result;
+}
+
+void RCL_moveCameraWithCollision(RCL_Camera *camera, RCL_Vector2D planeOffset,
+ RCL_Unit heightOffset, RCL_ArrayFunction floorHeightFunc,
+ RCL_ArrayFunction ceilingHeightFunc, int8_t computeHeight, int8_t force)
+{
+ int8_t movesInPlane = planeOffset.x != 0 || planeOffset.y != 0;
+
+ if (movesInPlane || force)
+ {
+ int16_t xSquareNew, ySquareNew;
+
+ RCL_Vector2D corner; // BBox corner in the movement direction
+ RCL_Vector2D cornerNew;
+
+ int16_t xDir = planeOffset.x > 0 ? 1 : -1;
+ int16_t yDir = planeOffset.y > 0 ? 1 : -1;
+
+ corner.x = camera->position.x + xDir * RCL_CAMERA_COLL_RADIUS;
+ corner.y = camera->position.y + yDir * RCL_CAMERA_COLL_RADIUS;
+
+ int16_t xSquare = RCL_divRoundDown(corner.x,RCL_UNITS_PER_SQUARE);
+ int16_t ySquare = RCL_divRoundDown(corner.y,RCL_UNITS_PER_SQUARE);
+
+ cornerNew.x = corner.x + planeOffset.x;
+ cornerNew.y = corner.y + planeOffset.y;
+
+ xSquareNew = RCL_divRoundDown(cornerNew.x,RCL_UNITS_PER_SQUARE);
+ ySquareNew = RCL_divRoundDown(cornerNew.y,RCL_UNITS_PER_SQUARE);
+
+ RCL_Unit bottomLimit = -1 * RCL_INFINITY;
+ RCL_Unit topLimit = RCL_INFINITY;
+
+ RCL_Unit currCeilHeight = RCL_INFINITY;
+
+ if (computeHeight)
+ {
+ bottomLimit = camera->height - RCL_CAMERA_COLL_HEIGHT_BELOW +
+ RCL_CAMERA_COLL_STEP_HEIGHT;
+
+ topLimit = camera->height + RCL_CAMERA_COLL_HEIGHT_ABOVE;
+
+ if (ceilingHeightFunc != 0)
+ currCeilHeight = ceilingHeightFunc(xSquare,ySquare);
+ }
+
+ // checks a single square for collision against the camera
+ #define collCheck(dir,s1,s2)\
+ if (computeHeight)\
+ {\
+ RCL_Unit height = floorHeightFunc(s1,s2);\
+ if (height > bottomLimit || \
+ currCeilHeight - height < \
+ RCL_CAMERA_COLL_HEIGHT_BELOW + RCL_CAMERA_COLL_HEIGHT_ABOVE)\
+ dir##Collides = 1;\
+ else if (ceilingHeightFunc != 0)\
+ {\
+ RCL_Unit height2 = ceilingHeightFunc(s1,s2);\
+ if ((height2 < topLimit) || ((height2 - height) < \
+ (RCL_CAMERA_COLL_HEIGHT_ABOVE + RCL_CAMERA_COLL_HEIGHT_BELOW)))\
+ dir##Collides = 1;\
+ }\
+ }\
+ else\
+ dir##Collides = floorHeightFunc(s1,s2) > RCL_CAMERA_COLL_STEP_HEIGHT;
+
+ // check collision against non-diagonal square
+ #define collCheckOrtho(dir,dir2,s1,s2,x)\
+ if (dir##SquareNew != dir##Square)\
+ {\
+ collCheck(dir,s1,s2)\
+ }\
+ if (!dir##Collides)\
+ { /* now also check for coll on the neighbouring square */ \
+ int16_t dir2##Square2 = RCL_divRoundDown(corner.dir2 - dir2##Dir *\
+ RCL_CAMERA_COLL_RADIUS * 2,RCL_UNITS_PER_SQUARE);\
+ if (dir2##Square2 != dir2##Square)\
+ {\
+ if (x)\
+ collCheck(dir,dir##SquareNew,dir2##Square2)\
+ else\
+ collCheck(dir,dir2##Square2,dir##SquareNew)\
+ }\
+ }
+
+ int8_t xCollides = 0;
+ collCheckOrtho(x,y,xSquareNew,ySquare,1)
+
+ int8_t yCollides = 0;
+ collCheckOrtho(y,x,xSquare,ySquareNew,0)
+
+ if (xCollides || yCollides)
+ {
+ if (movesInPlane)
+ {
+ #define collHandle(dir)\
+ if (dir##Collides)\
+ cornerNew.dir = (dir##Square) * RCL_UNITS_PER_SQUARE +\
+ RCL_UNITS_PER_SQUARE / 2 + dir##Dir * (RCL_UNITS_PER_SQUARE / 2) -\
+ dir##Dir;\
+
+ collHandle(x)
+ collHandle(y)
+
+ #undef collHandle
+ }
+ else
+ {
+ /* Player collides without moving in the plane; this can happen e.g. on
+ elevators due to vertical only movement. This code can get executed
+ when force == 1. */
+
+ RCL_Vector2D squarePos;
+ RCL_Vector2D newPos;
+
+ squarePos.x = xSquare * RCL_UNITS_PER_SQUARE;
+ squarePos.y = ySquare * RCL_UNITS_PER_SQUARE;
+
+ newPos.x =
+ RCL_max(squarePos.x + RCL_CAMERA_COLL_RADIUS + 1,
+ RCL_min(squarePos.x + RCL_UNITS_PER_SQUARE - RCL_CAMERA_COLL_RADIUS - 1,
+ camera->position.x));
+
+ newPos.y =
+ RCL_max(squarePos.y + RCL_CAMERA_COLL_RADIUS + 1,
+ RCL_min(squarePos.y + RCL_UNITS_PER_SQUARE - RCL_CAMERA_COLL_RADIUS - 1,
+ camera->position.y));
+
+ cornerNew.x = corner.x + (newPos.x - camera->position.x);
+ cornerNew.y = corner.y + (newPos.y - camera->position.y);
+ }
+ }
+ else
+ {
+ /* If no non-diagonal collision is detected, a diagonal/corner collision
+ can still happen, check it here. */
+
+ if (xSquare != xSquareNew && ySquare != ySquareNew)
+ {
+ int8_t xyCollides = 0;
+ collCheck(xy,xSquareNew,ySquareNew)
+
+ if (xyCollides)
+ {
+ // normally should slide, but let's KISS and simply stop any movement
+ cornerNew = corner;
+ }
+ }
+ }
+
+ #undef collCheck
+
+ camera->position.x = cornerNew.x - xDir * RCL_CAMERA_COLL_RADIUS;
+ camera->position.y = cornerNew.y - yDir * RCL_CAMERA_COLL_RADIUS;
+ }
+
+ if (computeHeight && (movesInPlane || (heightOffset != 0) || force))
+ {
+ camera->height += heightOffset;
+
+ int16_t xSquare1 = RCL_divRoundDown(camera->position.x -
+ RCL_CAMERA_COLL_RADIUS,RCL_UNITS_PER_SQUARE);
+
+ int16_t xSquare2 = RCL_divRoundDown(camera->position.x +
+ RCL_CAMERA_COLL_RADIUS,RCL_UNITS_PER_SQUARE);
+
+ int16_t ySquare1 = RCL_divRoundDown(camera->position.y -
+ RCL_CAMERA_COLL_RADIUS,RCL_UNITS_PER_SQUARE);
+
+ int16_t ySquare2 = RCL_divRoundDown(camera->position.y +
+ RCL_CAMERA_COLL_RADIUS,RCL_UNITS_PER_SQUARE);
+
+ RCL_Unit bottomLimit = floorHeightFunc(xSquare1,ySquare1);
+ RCL_Unit topLimit = ceilingHeightFunc != 0 ?
+ ceilingHeightFunc(xSquare1,ySquare1) : RCL_INFINITY;
+
+ RCL_Unit height;
+
+ #define checkSquares(s1,s2)\
+ {\
+ height = floorHeightFunc(xSquare##s1,ySquare##s2);\
+ bottomLimit = RCL_max(bottomLimit,height);\
+ height = ceilingHeightFunc != 0 ?\
+ ceilingHeightFunc(xSquare##s1,ySquare##s2) : RCL_INFINITY;\
+ topLimit = RCL_min(topLimit,height);\
+ }
+
+ if (xSquare2 != xSquare1)
+ checkSquares(2,1)
+
+ if (ySquare2 != ySquare1)
+ checkSquares(1,2)
+
+ if (xSquare2 != xSquare1 && ySquare2 != ySquare1)
+ checkSquares(2,2)
+
+ camera->height = RCL_clamp(camera->height,
+ bottomLimit + RCL_CAMERA_COLL_HEIGHT_BELOW,
+ topLimit - RCL_CAMERA_COLL_HEIGHT_ABOVE);
+
+ #undef checkSquares
+ }
+}
+
+void RCL_initCamera(RCL_Camera *camera)
+{
+ camera->position.x = 0;
+ camera->position.y = 0;
+ camera->direction = 0;
+ camera->resolution.x = 20;
+ camera->resolution.y = 15;
+ camera->shear = 0;
+ camera->height = RCL_UNITS_PER_SQUARE;
+}
+
+void RCL_initRayConstraints(RCL_RayConstraints *constraints)
+{
+ constraints->maxHits = 1;
+ constraints->maxSteps = 20;
+}
+