1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
|
/**********************************************************************************************
*
* rmem - raylib memory pool and objects pool
*
* A quick, efficient, and minimal free list and arena-based allocator
*
* PURPOSE:
* - A quicker, efficient memory allocator alternative to 'malloc' and friends.
* - Reduce the possibilities of memory leaks for beginner developers using Raylib.
* - Being able to flexibly range check memory if necessary.
*
* CONFIGURATION:
*
* #define RMEM_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2019 Kevin 'Assyrianic' Yonan (@assyrianic) and reviewed by Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#ifndef RMEM_H
#define RMEM_H
#include <inttypes.h>
#include <stdbool.h>
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
#define RMEMAPI __declspec(dllexport) // We are building library as a Win32 shared library (.dll)
#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
#define RMEMAPI __declspec(dllimport) // We are using library as a Win32 shared library (.dll)
#else
#define RMEMAPI // We are building or using library as a static library (or Linux shared library)
#endif
#define RMEM_VERSION "v1.3" // changelog at bottom of header.
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// Memory Pool
typedef struct MemNode MemNode;
struct MemNode {
size_t size;
MemNode *next, *prev;
};
// Freelist implementation
typedef struct AllocList {
MemNode *head, *tail;
size_t len;
} AllocList;
// Arena allocator.
typedef struct Arena {
uintptr_t mem, offs;
size_t size;
} Arena;
enum {
MEMPOOL_BUCKET_SIZE = 8,
MEMPOOL_BUCKET_BITS = (sizeof(uintptr_t) >> 1) + 1,
MEM_SPLIT_THRESHOLD = sizeof(uintptr_t) * 4
};
typedef struct MemPool {
AllocList large, buckets[MEMPOOL_BUCKET_SIZE];
Arena arena;
} MemPool;
// Object Pool
typedef struct ObjPool {
uintptr_t mem, offs;
size_t objSize, freeBlocks, memSize;
} ObjPool;
// Double-Ended Stack aka Deque
typedef struct BiStack {
uintptr_t mem, front, back;
size_t size;
} BiStack;
#if defined(__cplusplus)
extern "C" { // Prevents name mangling of functions
#endif
//------------------------------------------------------------------------------------
// Functions Declaration - Memory Pool
//------------------------------------------------------------------------------------
RMEMAPI MemPool CreateMemPool(size_t bytes);
RMEMAPI MemPool CreateMemPoolFromBuffer(void *buf, size_t bytes);
RMEMAPI void DestroyMemPool(MemPool *mempool);
RMEMAPI void *MemPoolAlloc(MemPool *mempool, size_t bytes);
RMEMAPI void *MemPoolRealloc(MemPool *mempool, void *ptr, size_t bytes);
RMEMAPI void MemPoolFree(MemPool *mempool, void *ptr);
RMEMAPI void MemPoolCleanUp(MemPool *mempool, void **ptrref);
RMEMAPI void MemPoolReset(MemPool *mempool);
RMEMAPI size_t GetMemPoolFreeMemory(const MemPool mempool);
//------------------------------------------------------------------------------------
// Functions Declaration - Object Pool
//------------------------------------------------------------------------------------
RMEMAPI ObjPool CreateObjPool(size_t objsize, size_t len);
RMEMAPI ObjPool CreateObjPoolFromBuffer(void *buf, size_t objsize, size_t len);
RMEMAPI void DestroyObjPool(ObjPool *objpool);
RMEMAPI void *ObjPoolAlloc(ObjPool *objpool);
RMEMAPI void ObjPoolFree(ObjPool *objpool, void *ptr);
RMEMAPI void ObjPoolCleanUp(ObjPool *objpool, void **ptrref);
//------------------------------------------------------------------------------------
// Functions Declaration - Double-Ended Stack
//------------------------------------------------------------------------------------
RMEMAPI BiStack CreateBiStack(size_t len);
RMEMAPI BiStack CreateBiStackFromBuffer(void *buf, size_t len);
RMEMAPI void DestroyBiStack(BiStack *destack);
RMEMAPI void *BiStackAllocFront(BiStack *destack, size_t len);
RMEMAPI void *BiStackAllocBack(BiStack *destack, size_t len);
RMEMAPI void BiStackResetFront(BiStack *destack);
RMEMAPI void BiStackResetBack(BiStack *destack);
RMEMAPI void BiStackResetAll(BiStack *destack);
RMEMAPI intptr_t BiStackMargins(BiStack destack);
#ifdef __cplusplus
}
#endif
#endif // RMEM_H
/***********************************************************************************
*
* RMEM IMPLEMENTATION
*
************************************************************************************/
#if defined(RMEM_IMPLEMENTATION)
#include <stdio.h> // Required for:
#include <stdlib.h> // Required for:
#include <string.h> // Required for:
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
// Make sure restrict type qualifier for pointers is defined
// NOTE: Not supported by C++, it is a C only keyword
#if defined(_WIN32) || defined(_WIN64) || defined(__CYGWIN__) || defined(_MSC_VER)
#ifndef restrict
#define restrict __restrict
#endif
#endif
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static inline size_t __AlignSize(const size_t size, const size_t align)
{
return (size + (align - 1)) & -align;
}
static MemNode *__SplitMemNode(MemNode *const node, const size_t bytes)
{
uintptr_t n = ( uintptr_t )node;
MemNode *const r = ( MemNode* )(n + (node->size - bytes));
node->size -= bytes;
r->size = bytes;
return r;
}
static void __InsertMemNodeBefore(AllocList *const list, MemNode *const insert, MemNode *const curr)
{
insert->next = curr;
if (curr->prev==NULL) list->head = insert;
else
{
insert->prev = curr->prev;
curr->prev->next = insert;
}
curr->prev = insert;
}
static void __ReplaceMemNode(MemNode *const old, MemNode *const replace)
{
replace->prev = old->prev;
replace->next = old->next;
if( old->prev != NULL )
old->prev->next = replace;
if( old->next != NULL )
old->next->prev = replace;
}
static MemNode *__RemoveMemNode(AllocList *const list, MemNode *const node)
{
if (node->prev != NULL) node->prev->next = node->next;
else
{
list->head = node->next;
if (list->head != NULL) list->head->prev = NULL;
else list->tail = NULL;
}
if (node->next != NULL) node->next->prev = node->prev;
else
{
list->tail = node->prev;
if (list->tail != NULL) list->tail->next = NULL;
else list->head = NULL;
}
list->len--;
return node;
}
static MemNode *__FindMemNode(AllocList *const list, const size_t bytes)
{
for (MemNode *node = list->head; node != NULL; node = node->next)
{
if (node->size < bytes) continue;
// close in size - reduce fragmentation by not splitting.
else if (node->size <= bytes + MEM_SPLIT_THRESHOLD) return __RemoveMemNode(list, node);
else return __SplitMemNode(node, bytes);
}
return NULL;
}
static void __InsertMemNode(MemPool *const mempool, AllocList *const list, MemNode *const node, const bool is_bucket)
{
if (list->head == NULL)
{
list->head = node;
list->len++;
}
else
{
for (MemNode *iter = list->head; iter != NULL; iter = iter->next)
{
if (( uintptr_t )iter == mempool->arena.offs)
{
mempool->arena.offs += iter->size;
__RemoveMemNode(list, iter);
iter = list->head;
if (iter == NULL) {
list->head = node;
return;
}
}
const uintptr_t inode = ( uintptr_t )node;
const uintptr_t iiter = ( uintptr_t )iter;
const uintptr_t iter_end = iiter + iter->size;
const uintptr_t node_end = inode + node->size;
if (iter==node) return;
else if (iter < node)
{
// node was coalesced prior.
if (iter_end > inode) return;
else if (iter_end==inode && !is_bucket)
{
// if we can coalesce, do so.
iter->size += node->size;
return;
}
else if (iter->next == NULL)
{
// we reached the end of the free list -> append the node
iter->next = node;
node->prev = iter;
list->len++;
return;
}
}
else if (iter > node)
{
// Address sort, lowest to highest aka ascending order.
if (iiter < node_end) return;
else if (iter==list->head && !is_bucket)
{
if (iter_end==inode) iter->size += node->size;
else if (node_end==iiter)
{
node->size += list->head->size;
node->next = list->head->next;
node->prev = NULL;
list->head = node;
}
else
{
node->next = iter;
node->prev = NULL;
iter->prev = node;
list->head = node;
list->len++;
}
return;
}
else if (iter_end==inode && !is_bucket)
{
// if we can coalesce, do so.
iter->size += node->size;
return;
}
else
{
__InsertMemNodeBefore(list, node, iter);
list->len++;
return;
}
}
}
}
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Memory Pool
//----------------------------------------------------------------------------------
MemPool CreateMemPool(const size_t size)
{
MemPool mempool = { 0 };
if (size == 0) return mempool;
else
{
// Align the mempool size to at least the size of an alloc node.
uint8_t *const restrict buf = malloc(size*sizeof *buf);
if (buf==NULL) return mempool;
else
{
mempool.arena.size = size;
mempool.arena.mem = ( uintptr_t )buf;
mempool.arena.offs = mempool.arena.mem + mempool.arena.size;
return mempool;
}
}
}
MemPool CreateMemPoolFromBuffer(void *const restrict buf, const size_t size)
{
MemPool mempool = { 0 };
if ((size == 0) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool;
else
{
mempool.arena.size = size;
mempool.arena.mem = ( uintptr_t )buf;
mempool.arena.offs = mempool.arena.mem + mempool.arena.size;
return mempool;
}
}
void DestroyMemPool(MemPool *const restrict mempool)
{
if (mempool->arena.mem == 0) return;
else
{
void *const restrict ptr = ( void* )mempool->arena.mem;
free(ptr);
*mempool = (MemPool){ 0 };
}
}
void *MemPoolAlloc(MemPool *const mempool, const size_t size)
{
if ((size == 0) || (size > mempool->arena.size)) return NULL;
else
{
MemNode *new_mem = NULL;
const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t));
const size_t BUCKET_SLOT = (ALLOC_SIZE >> MEMPOOL_BUCKET_BITS) - 1;
// If the size is small enough, let's check if our buckets has a fitting memory block.
if (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE)
{
new_mem = __FindMemNode(&mempool->buckets[BUCKET_SLOT], ALLOC_SIZE);
}
else if (mempool->large.head != NULL)
{
new_mem = __FindMemNode(&mempool->large, ALLOC_SIZE);
}
if (new_mem == NULL)
{
// not enough memory to support the size!
if ((mempool->arena.offs - ALLOC_SIZE) < mempool->arena.mem) return NULL;
else
{
// Couldn't allocate from a freelist, allocate from available mempool.
// Subtract allocation size from the mempool.
mempool->arena.offs -= ALLOC_SIZE;
// Use the available mempool space as the new node.
new_mem = ( MemNode* )mempool->arena.offs;
new_mem->size = ALLOC_SIZE;
}
}
// Visual of the allocation block.
// --------------
// | mem size | lowest addr of block
// | next node | 12 byte (32-bit) header
// | prev node | 24 byte (64-bit) header
// |------------|
// | alloc'd |
// | memory |
// | space | highest addr of block
// --------------
new_mem->next = new_mem->prev = NULL;
uint8_t *const restrict final_mem = ( uint8_t* )new_mem + sizeof *new_mem;
return memset(final_mem, 0, new_mem->size - sizeof *new_mem);
}
}
void *MemPoolRealloc(MemPool *const restrict mempool, void *const ptr, const size_t size)
{
if (size > mempool->arena.size) return NULL;
// NULL ptr should make this work like regular Allocation.
else if (ptr == NULL) return MemPoolAlloc(mempool, size);
else if ((uintptr_t)ptr - sizeof(MemNode) < mempool->arena.mem) return NULL;
else
{
MemNode *const node = ( MemNode* )(( uint8_t* )ptr - sizeof *node);
const size_t NODE_SIZE = sizeof *node;
uint8_t *const resized_block = MemPoolAlloc(mempool, size);
if (resized_block == NULL) return NULL;
else
{
MemNode *const resized = ( MemNode* )(resized_block - sizeof *resized);
memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE));
MemPoolFree(mempool, ptr);
return resized_block;
}
}
}
void MemPoolFree(MemPool *const restrict mempool, void *const ptr)
{
const uintptr_t p = ( uintptr_t )ptr;
if ((ptr == NULL) || (p - sizeof(MemNode) < mempool->arena.mem)) return;
else
{
// Behind the actual pointer data is the allocation info.
const uintptr_t block = p - sizeof(MemNode);
MemNode *const mem_node = ( MemNode* )block;
const size_t BUCKET_SLOT = (mem_node->size >> MEMPOOL_BUCKET_BITS) - 1;
// Make sure the pointer data is valid.
if ((block < mempool->arena.offs) ||
((block - mempool->arena.mem) > mempool->arena.size) ||
(mem_node->size == 0) ||
(mem_node->size > mempool->arena.size)) return;
// If the mem_node is right at the arena offs, then merge it back to the arena.
else if (block == mempool->arena.offs)
{
mempool->arena.offs += mem_node->size;
}
else
{
// try to place it into bucket or large freelist.
struct AllocList *const l = (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE) ? &mempool->buckets[BUCKET_SLOT] : &mempool->large;
__InsertMemNode(mempool, l, mem_node, (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE));
}
}
}
void MemPoolCleanUp(MemPool *const restrict mempool, void **const ptrref)
{
if ((ptrref == NULL) || (*ptrref == NULL)) return;
else
{
MemPoolFree(mempool, *ptrref);
*ptrref = NULL;
}
}
size_t GetMemPoolFreeMemory(const MemPool mempool)
{
size_t total_remaining = mempool.arena.offs - mempool.arena.mem;
for (MemNode *n=mempool.large.head; n != NULL; n = n->next) total_remaining += n->size;
for (size_t i=0; i<MEMPOOL_BUCKET_SIZE; i++) for (MemNode *n = mempool.buckets[i].head; n != NULL; n = n->next) total_remaining += n->size;
return total_remaining;
}
void MemPoolReset(MemPool *const mempool)
{
mempool->large.head = mempool->large.tail = NULL;
mempool->large.len = 0;
for (size_t i = 0; i < MEMPOOL_BUCKET_SIZE; i++)
{
mempool->buckets[i].head = mempool->buckets[i].tail = NULL;
mempool->buckets[i].len = 0;
}
mempool->arena.offs = mempool->arena.mem + mempool->arena.size;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Object Pool
//----------------------------------------------------------------------------------
ObjPool CreateObjPool(const size_t objsize, const size_t len)
{
ObjPool objpool = { 0 };
if ((len == 0) || (objsize == 0)) return objpool;
else
{
const size_t aligned_size = __AlignSize(objsize, sizeof(size_t));
uint8_t *const restrict buf = calloc(len, aligned_size);
if (buf == NULL) return objpool;
objpool.objSize = aligned_size;
objpool.memSize = objpool.freeBlocks = len;
objpool.mem = ( uintptr_t )buf;
for (size_t i=0; i<objpool.freeBlocks; i++)
{
size_t *const restrict index = ( size_t* )(objpool.mem + (i*aligned_size));
*index = i + 1;
}
objpool.offs = objpool.mem;
return objpool;
}
}
ObjPool CreateObjPoolFromBuffer(void *const restrict buf, const size_t objsize, const size_t len)
{
ObjPool objpool = { 0 };
// If the object size isn't large enough to align to a size_t, then we can't use it.
const size_t aligned_size = __AlignSize(objsize, sizeof(size_t));
if ((buf == NULL) || (len == 0) || (objsize < sizeof(size_t)) || (objsize*len != aligned_size*len)) return objpool;
else
{
objpool.objSize = aligned_size;
objpool.memSize = objpool.freeBlocks = len;
objpool.mem = (uintptr_t)buf;
for (size_t i=0; i<objpool.freeBlocks; i++)
{
size_t *const restrict index = ( size_t* )(objpool.mem + (i*aligned_size));
*index = i + 1;
}
objpool.offs = objpool.mem;
return objpool;
}
}
void DestroyObjPool(ObjPool *const restrict objpool)
{
if (objpool->mem == 0) return;
else
{
void *const restrict ptr = ( void* )objpool->mem;
free(ptr);
*objpool = (ObjPool){0};
}
}
void *ObjPoolAlloc(ObjPool *const objpool)
{
if (objpool->freeBlocks > 0)
{
// For first allocation, head points to the very first index.
// Head = &pool[0];
// ret = Head == ret = &pool[0];
size_t *const restrict block = ( size_t* )objpool->offs;
objpool->freeBlocks--;
// after allocating, we set head to the address of the index that *Head holds.
// Head = &pool[*Head * pool.objsize];
objpool->offs = (objpool->freeBlocks != 0)? objpool->mem + (*block*objpool->objSize) : 0;
return memset(block, 0, objpool->objSize);
}
else return NULL;
}
void ObjPoolFree(ObjPool *const restrict objpool, void *const ptr)
{
uintptr_t block = (uintptr_t)ptr;
if ((ptr == NULL) || (block < objpool->mem) || (block > objpool->mem + objpool->memSize*objpool->objSize)) return;
else
{
// When we free our pointer, we recycle the pointer space to store the previous index and then we push it as our new head.
// *p = index of Head in relation to the buffer;
// Head = p;
size_t *const restrict index = ( size_t* )block;
*index = (objpool->offs != 0)? (objpool->offs - objpool->mem)/objpool->objSize : objpool->memSize;
objpool->offs = block;
objpool->freeBlocks++;
}
}
void ObjPoolCleanUp(ObjPool *const restrict objpool, void **const restrict ptrref)
{
if (ptrref == NULL) return;
else
{
ObjPoolFree(objpool, *ptrref);
*ptrref = NULL;
}
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Double-Ended Stack
//----------------------------------------------------------------------------------
BiStack CreateBiStack(const size_t len)
{
BiStack destack = { 0 };
if (len == 0) return destack;
uint8_t *const buf = malloc(len*sizeof *buf);
if (buf==NULL) return destack;
destack.size = len;
destack.mem = ( uintptr_t )buf;
destack.front = destack.mem;
destack.back = destack.mem + len;
return destack;
}
BiStack CreateBiStackFromBuffer(void *const buf, const size_t len)
{
BiStack destack = { 0 };
if (len == 0 || buf == NULL) return destack;
else
{
destack.size = len;
destack.mem = destack.front = ( uintptr_t )buf;
destack.back = destack.mem + len;
return destack;
}
}
void DestroyBiStack(BiStack *const restrict destack)
{
if (destack->mem == 0) return;
else
{
uint8_t *const restrict buf = ( uint8_t* )destack->mem;
free(buf);
*destack = (BiStack){0};
}
}
void *BiStackAllocFront(BiStack *const restrict destack, const size_t len)
{
if (destack->mem == 0) return NULL;
else
{
const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
// front end arena is too high!
if (destack->front + ALIGNED_LEN >= destack->back) return NULL;
else
{
uint8_t *const restrict ptr = ( uint8_t* )destack->front;
destack->front += ALIGNED_LEN;
return ptr;
}
}
}
void *BiStackAllocBack(BiStack *const restrict destack, const size_t len)
{
if (destack->mem == 0) return NULL;
else
{
const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
// back end arena is too low
if (destack->back - ALIGNED_LEN <= destack->front) return NULL;
else
{
destack->back -= ALIGNED_LEN;
uint8_t *const restrict ptr = ( uint8_t* )destack->back;
return ptr;
}
}
}
void BiStackResetFront(BiStack *const destack)
{
if (destack->mem == 0) return;
else destack->front = destack->mem;
}
void BiStackResetBack(BiStack *const destack)
{
if (destack->mem == 0) return;
else destack->back = destack->mem + destack->size;
}
void BiStackResetAll(BiStack *const destack)
{
BiStackResetBack(destack);
BiStackResetFront(destack);
}
inline intptr_t BiStackMargins(const BiStack destack)
{
return destack.back - destack.front;
}
#endif // RMEM_IMPLEMENTATION
/*******
* Changelog
* v1.0: First Creation.
* v1.1: bug patches for the mempool and addition of object pool.
* v1.2: addition of bidirectional arena.
* v1.3:
* optimizations of allocators.
* renamed 'Stack' to 'Arena'.
* replaced certain define constants with an anonymous enum.
* refactored MemPool to no longer require active or deferred defragging.
********/
|