aboutsummaryrefslogtreecommitdiffstats
path: root/src/small3dlib.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/small3dlib.h')
-rw-r--r--src/small3dlib.h2945
1 files changed, 2945 insertions, 0 deletions
diff --git a/src/small3dlib.h b/src/small3dlib.h
new file mode 100644
index 0000000..b620295
--- /dev/null
+++ b/src/small3dlib.h
@@ -0,0 +1,2945 @@
+#ifndef SMALL3DLIB_H
+#define SMALL3DLIB_H
+
+/*
+ Simple realtime 3D software rasterization renderer. It is fast, focused on
+ resource-limited computers, located in a single C header file, with no
+ dependencies, using only 32bit integer arithmetics.
+
+ author: Miloslav Ciz
+ license: CC0 1.0 (public domain)
+ found at https://creativecommons.org/publicdomain/zero/1.0/
+ + additional waiver of all IP
+ version: 0.901d
+
+ Before including the library, define S3L_PIXEL_FUNCTION to the name of the
+ function you'll be using to draw single pixels (this function will be called
+ by the library to render the frames). Also either init S3L_resolutionX and
+ S3L_resolutionY or define S3L_RESOLUTION_X and S3L_RESOLUTION_Y.
+
+ You'll also need to decide what rendering strategy and other settings you
+ want to use, depending on your specific usecase. You may want to use a
+ z-buffer (full or reduced, S3L_Z_BUFFER), sorted-drawing (S3L_SORT), or even
+ none of these. See the description of the options in this file.
+
+ The rendering itself is done with S3L_drawScene, usually preceded by
+ S3L_newFrame (for clearing zBuffer etc.).
+
+ The library is meant to be used in not so huge programs that use single
+ translation unit and so includes both declarations and implementation at once.
+ If you for some reason use multiple translation units (which include the
+ library), you'll have to handle this yourself (e.g. create a wrapper, manually
+ split the library into .c and .h etc.).
+
+ --------------------
+
+ This work's goal is to never be encumbered by any exclusive intellectual
+ property rights. The work is therefore provided under CC0 1.0 + additional
+ WAIVER OF ALL INTELLECTUAL PROPERTY RIGHTS that waives the rest of
+ intellectual property rights not already waived by CC0 1.0. The WAIVER OF ALL
+ INTELLECTUAL PROPERTY RGHTS is as follows:
+
+ Each contributor to this work agrees that they waive any exclusive rights,
+ including but not limited to copyright, patents, trademark, trade dress,
+ industrial design, plant varieties and trade secrets, to any and all ideas,
+ concepts, processes, discoveries, improvements and inventions conceived,
+ discovered, made, designed, researched or developed by the contributor either
+ solely or jointly with others, which relate to this work or result from this
+ work. Should any waiver of such right be judged legally invalid or
+ ineffective under applicable law, the contributor hereby grants to each
+ affected person a royalty-free, non transferable, non sublicensable, non
+ exclusive, irrevocable and unconditional license to this right.
+
+ --------------------
+
+ CONVENTIONS:
+
+ This library should never draw pixels outside the specified screen
+ boundaries, so you don't have to check this (that would cost CPU time)!
+
+ You can safely assume that triangles are rasterized one by one and from top
+ down, left to right (so you can utilize e.g. various caches), and if sorting
+ is disabled the order of rasterization will be that specified in the scene
+ structure and model arrays (of course, some triangles and models may be
+ skipped due to culling etc.).
+
+ Angles are in S3L_Units, a full angle (2 pi) is S3L_FRACTIONS_PER_UNITs.
+
+ We use row vectors.
+
+ In 3D space, a left-handed coord. system is used. One spatial unit is split
+ into S3L_FRACTIONS_PER_UNIT fractions (fixed point arithmetic).
+
+ y ^
+ | _
+ | /| z
+ | /
+ | /
+ [0,0,0]-------> x
+
+ Untransformed camera is placed at [0,0,0], looking forward along +z axis. The
+ projection plane is centered at [0,0,0], stretrinch from
+ -S3L_FRACTIONS_PER_UNIT to S3L_FRACTIONS_PER_UNIT horizontally (x),
+ vertical size (y) depends on the aspect ratio (S3L_RESOLUTION_X and
+ S3L_RESOLUTION_Y). Camera FOV is defined by focal length in S3L_Units.
+
+ y ^
+ | _
+ | /| z
+ ____|_/__
+ | |/ |
+ -----[0,0,0]-|-----> x
+ |____|____|
+ |
+ |
+
+ Rotations use Euler angles and are generally in the extrinsic Euler angles in
+ ZXY order (by Z, then by X, then by Y). Positive rotation about an axis
+ rotates CW (clock-wise) when looking in the direction of the axis.
+
+ Coordinates of pixels on the screen start at the top left, from [0,0].
+
+ There is NO subpixel accuracy (screen coordinates are only integer).
+
+ Triangle rasterization rules are these (mostly same as OpenGL, D3D etc.):
+
+ - Let's define:
+ - left side:
+ - not exactly horizontal, and on the left side of triangle
+ - exactly horizontal and above the topmost
+ (in other words: its normal points at least a little to the left or
+ completely up)
+ - right side: not left side
+ - Pixel centers are at integer coordinates and triangle for drawing are
+ specified with integer coordinates of pixel centers.
+ - A pixel is rasterized:
+ - if its center is inside the triangle OR
+ - if its center is exactly on the triangle side which is left and at the
+ same time is not on the side that's right (case of a triangle that's on
+ a single line) OR
+ - if its center is exactly on the triangle corner of sides neither of which
+ is right.
+
+ These rules imply among others:
+
+ - Adjacent triangles don't have any overlapping pixels, nor gaps between.
+ - Triangles of points that lie on a single line are NOT rasterized.
+ - A single "long" triangle CAN be rasterized as isolated islands of pixels.
+ - Transforming (e.g. mirroring, rotating by 90 degrees etc.) a result of
+ rasterizing triangle A is NOT generally equal to applying the same
+ transformation to triangle A first and then rasterizing it. Even the number
+ of rasterized pixels is usually different.
+ - If specifying a triangle with integer coordinates (which we are), then:
+ - The bottom-most corner (or side) of a triangle is never rasterized
+ (because it is connected to a right side).
+ - The top-most corner can only be rasterized on completely horizontal side
+ (otherwise it is connected to a right side).
+ - Vertically middle corner is rasterized if and only if it is on the left
+ of the triangle and at the same time is also not the bottom-most corner.
+*/
+
+#include <stdint.h>
+
+#ifdef S3L_RESOLUTION_X
+ #ifdef S3L_RESOLUTION_Y
+ #define S3L_MAX_PIXELS (S3L_RESOLUTION_X * S3L_RESOLUTION_Y)
+ #endif
+#endif
+
+#ifndef S3L_RESOLUTION_X
+ #ifndef S3L_MAX_PIXELS
+ #error Dynamic resolution set (S3L_RESOLUTION_X not defined), but\
+ S3L_MAX_PIXELS not defined!
+ #endif
+
+ uint16_t S3L_resolutionX = 512; /**< If a static resolution is not set with
+ S3L_RESOLUTION_X, this variable can be
+ used to change X resolution at runtime,
+ in which case S3L_MAX_PIXELS has to be
+ defined (to allocate zBuffer etc.)! */
+ #define S3L_RESOLUTION_X S3L_resolutionX
+#endif
+
+#ifndef S3L_RESOLUTION_Y
+ #ifndef S3L_MAX_PIXELS
+ #error Dynamic resolution set (S3L_RESOLUTION_Y not defined), but\
+ S3L_MAX_PIXELS not defined!
+ #endif
+
+ uint16_t S3L_resolutionY = 512; /**< Same as S3L_resolutionX, but for Y
+ resolution. */
+ #define S3L_RESOLUTION_Y S3L_resolutionY
+#endif
+
+#ifndef S3L_USE_WIDER_TYPES
+ /** If true, the library will use wider data types which will largely supress
+ many rendering bugs and imprecisions happening due to overflows, but this will
+ also consumer more RAM and may potentially be slower on computers with smaller
+ native integer. */
+
+ #define S3L_USE_WIDER_TYPES 0
+#endif
+
+/** Units of measurement in 3D space. There is S3L_FRACTIONS_PER_UNIT in one
+spatial unit. By dividing the unit into fractions we effectively achieve a
+fixed point arithmetic. The number of fractions is a constant that serves as
+1.0 in floating point arithmetic (normalization etc.). */
+
+typedef
+#if S3L_USE_WIDER_TYPES
+ int64_t
+#else
+ int32_t
+#endif
+ S3L_Unit;
+
+/** How many fractions a spatial unit is split into. This is NOT SUPPOSED TO
+BE REDEFINED, so rather don't do it (otherwise things may overflow etc.). */
+
+#define S3L_FRACTIONS_PER_UNIT 512
+
+typedef
+#if S3L_USE_WIDER_TYPES
+ int32_t
+#else
+ int16_t
+#endif
+ S3L_ScreenCoord;
+
+typedef
+#if S3L_USE_WIDER_TYPES
+ uint32_t
+#else
+ uint16_t
+#endif
+ S3L_Index;
+
+#ifndef S3L_NEAR_CROSS_STRATEGY
+ /** Specifies how the library will handle triangles that partially cross the
+ near plane. These are problematic and require special handling. Possible
+ values:
+
+ 0: Strictly cull any triangle crossing the near plane. This will make such
+ triangles disappear. This is good for performance or models viewed only
+ from at least small distance.
+ 1: Forcefully push the vertices crossing near plane in front of it. This is
+ a cheap technique that can be good enough for displaying simple
+ environments on slow devices, but texturing and geometric artifacts/warps
+ will appear.
+ 2: Geometrically correct the triangles crossing the near plane. This may
+ result in some triangles being subdivided into two and is a little more
+ expensive, but the results will be geometrically correct, even though
+ barycentric correction is not performed so texturing artifacts will
+ appear. Can be ideal with S3L_FLAT.
+ 3: Perform both geometrical and barycentric correction of triangle crossing
+ the near plane. This is significantly more expensive but results in
+ correct rendering. */
+
+ #define S3L_NEAR_CROSS_STRATEGY 0
+#endif
+
+#ifndef S3L_FLAT
+ /** If on, disables computation of per-pixel values such as barycentric
+ coordinates and depth -- these will still be available but will be the same
+ for the whole triangle. This can be used to create flat-shaded renders and
+ will be a lot faster. With this option on you will probably want to use
+ sorting instead of z-buffer. */
+
+ #define S3L_FLAT 0
+#endif
+
+#if S3L_FLAT
+ #define S3L_COMPUTE_DEPTH 0
+ #define S3L_PERSPECTIVE_CORRECTION 0
+ // don't disable z-buffer, it makes sense to use it with no sorting
+#endif
+
+#ifndef S3L_PERSPECTIVE_CORRECTION
+ /** Specifies what type of perspective correction (PC) to use. Remember this
+ is an expensive operation! Possible values:
+
+ 0: No perspective correction. Fastest, inaccurate from most angles.
+ 1: Per-pixel perspective correction, accurate but very expensive.
+ 2: Approximation (computing only at every S3L_PC_APPROX_LENGTHth pixel).
+ Quake-style approximation is used, which only computes the PC after
+ S3L_PC_APPROX_LENGTH pixels. This is reasonably accurate and fast. */
+
+ #define S3L_PERSPECTIVE_CORRECTION 0
+#endif
+
+#ifndef S3L_PC_APPROX_LENGTH
+ /** For S3L_PERSPECTIVE_CORRECTION == 2, this specifies after how many pixels
+ PC is recomputed. Should be a power of two to keep up the performance.
+ Smaller is nicer but slower. */
+
+ #define S3L_PC_APPROX_LENGTH 32
+#endif
+
+#if S3L_PERSPECTIVE_CORRECTION
+ #define S3L_COMPUTE_DEPTH 1 // PC inevitably computes depth, so enable it
+#endif
+
+#ifndef S3L_COMPUTE_DEPTH
+ /** Whether to compute depth for each pixel (fragment). Some other options
+ may turn this on automatically. If you don't need depth information, turning
+ this off can save performance. Depth will still be accessible in
+ S3L_PixelInfo, but will be constant -- equal to center point depth -- over
+ the whole triangle. */
+ #define S3L_COMPUTE_DEPTH 1
+#endif
+
+#ifndef S3L_Z_BUFFER
+ /** What type of z-buffer (depth buffer) to use for visibility determination.
+ Possible values:
+
+ 0: Don't use z-buffer. This saves a lot of memory, but visibility checking
+ won't be pixel-accurate and has to mostly be done by other means (typically
+ sorting).
+ 1: Use full z-buffer (of S3L_Units) for visibiltiy determination. This is the
+ most accurate option (and also a fast one), but requires a big amount of
+ memory.
+ 2: Use reduced-size z-buffer (of bytes). This is fast and somewhat accurate,
+ but inaccuracies can occur and a considerable amount of memory is
+ needed. */
+
+ #define S3L_Z_BUFFER 0
+#endif
+
+#ifndef S3L_REDUCED_Z_BUFFER_GRANULARITY
+ /** For S3L_Z_BUFFER == 2 this sets the reduced z-buffer granularity. */
+
+ #define S3L_REDUCED_Z_BUFFER_GRANULARITY 5
+#endif
+
+#ifndef S3L_STENCIL_BUFFER
+ /** Whether to use stencil buffer for drawing -- with this a pixel that would
+ be resterized over an already rasterized pixel (within a frame) will be
+ discarded. This is mostly for front-to-back sorted drawing. */
+
+ #define S3L_STENCIL_BUFFER 0
+#endif
+
+#ifndef S3L_SORT
+ /** Defines how to sort triangles before drawing a frame. This can be used to
+ solve visibility in case z-buffer is not used, to prevent overwriting already
+ rasterized pixels, implement transparency etc. Note that for simplicity and
+ performance a relatively simple sorting is used which doesn't work completely
+ correctly, so mistakes can occur (even the best sorting wouldn't be able to
+ solve e.g. intersecting triangles). Note that sorting requires a bit of extra
+ memory -- an array of the triangles to sort -- the size of this array limits
+ the maximum number of triangles that can be drawn in a single frame
+ (S3L_MAX_TRIANGES_DRAWN). Possible values:
+
+ 0: Don't sort triangles. This is fastest and doesn't use extra memory.
+ 1: Sort triangles from back to front. This can in most cases solve visibility
+ without requiring almost any extra memory compared to z-buffer.
+ 2: Sort triangles from front to back. This can be faster than back to front
+ because we prevent computing pixels that will be overwritten by nearer
+ ones, but we need a 1b stencil buffer for this (enable S3L_STENCIL_BUFFER),
+ so a bit more memory is needed. */
+
+ #define S3L_SORT 0
+#endif
+
+#ifndef S3L_MAX_TRIANGES_DRAWN
+ /** Maximum number of triangles that can be drawn in sorted modes. This
+ affects the size of the cache used for triangle sorting. */
+
+ #define S3L_MAX_TRIANGES_DRAWN 128
+#endif
+
+#ifndef S3L_NEAR
+ /** Distance of the near clipping plane. Points in front or EXATLY ON this
+ plane are considered outside the frustum. This must be >= 0. */
+
+ #define S3L_NEAR (S3L_FRACTIONS_PER_UNIT / 4)
+#endif
+
+#if S3L_NEAR <= 0
+#define S3L_NEAR 1 // Can't be <= 0.
+#endif
+
+#ifndef S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE
+ /** Affects the S3L_computeModelNormals function. See its description for
+ details. */
+
+ #define S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE 6
+#endif
+
+#ifndef S3L_FAST_LERP_QUALITY
+ /** Quality (scaling) of SOME (stepped) linear interpolations. 0 will most
+ likely be a tiny bit faster, but artifacts can occur for bigger tris, while
+ higher values can fix this -- in theory all higher values will have the same
+ speed (it is a shift value), but it mustn't be too high to prevent
+ overflow. */
+
+ #define S3L_FAST_LERP_QUALITY 11
+#endif
+
+/** Vector that consists of four scalars and can represent homogenous
+ coordinates, but is generally also used as Vec3 and Vec2 for various
+ purposes. */
+typedef struct
+{
+ S3L_Unit x;
+ S3L_Unit y;
+ S3L_Unit z;
+ S3L_Unit w;
+} S3L_Vec4;
+
+#define S3L_logVec4(v)\
+ printf("Vec4: %d %d %d %d\n",((v).x),((v).y),((v).z),((v).w))
+
+static inline void S3L_vec4Init(S3L_Vec4 *v);
+static inline void S3L_vec4Set(S3L_Vec4 *v, S3L_Unit x, S3L_Unit y,
+ S3L_Unit z, S3L_Unit w);
+static inline void S3L_vec3Add(S3L_Vec4 *result, S3L_Vec4 added);
+static inline void S3L_vec3Sub(S3L_Vec4 *result, S3L_Vec4 substracted);
+S3L_Unit S3L_vec3Length(S3L_Vec4 v);
+
+/** Normalizes Vec3. Note that this function tries to normalize correctly
+ rather than quickly! If you need to normalize quickly, do it yourself in a
+ way that best fits your case. */
+void S3L_vec3Normalize(S3L_Vec4 *v);
+
+/** Like S3L_vec3Normalize, but doesn't perform any checks on the input vector,
+ which is faster, but can be very innacurate or overflowing. You are supposed
+ to provide a "nice" vector (not too big or small). */
+static inline void S3L_vec3NormalizeFast(S3L_Vec4 *v);
+
+S3L_Unit S3L_vec2Length(S3L_Vec4 v);
+void S3L_vec3Cross(S3L_Vec4 a, S3L_Vec4 b, S3L_Vec4 *result);
+static inline S3L_Unit S3L_vec3Dot(S3L_Vec4 a, S3L_Vec4 b);
+
+/** Computes a reflection direction (typically used e.g. for specular component
+ in Phong illumination). The input vectors must be normalized. The result will
+ be normalized as well. */
+void S3L_reflect(S3L_Vec4 toLight, S3L_Vec4 normal, S3L_Vec4 *result);
+
+/** Determines the winding of a triangle, returns 1 (CW, clockwise), -1 (CCW,
+ counterclockwise) or 0 (points lie on a single line). */
+static inline int8_t S3L_triangleWinding(
+ S3L_ScreenCoord x0,
+ S3L_ScreenCoord y0,
+ S3L_ScreenCoord x1,
+ S3L_ScreenCoord y1,
+ S3L_ScreenCoord x2,
+ S3L_ScreenCoord y2);
+
+typedef struct
+{
+ S3L_Vec4 translation;
+ S3L_Vec4 rotation; /**< Euler angles. Rortation is applied in this order:
+ 1. z = by z (roll) CW looking along z+
+ 2. x = by x (pitch) CW looking along x+
+ 3. y = by y (yaw) CW looking along y+ */
+ S3L_Vec4 scale;
+} S3L_Transform3D;
+
+#define S3L_logTransform3D(t)\
+ printf("Transform3D: T = [%d %d %d], R = [%d %d %d], S = [%d %d %d]\n",\
+ (t).translation.x,(t).translation.y,(t).translation.z,\
+ (t).rotation.x,(t).rotation.y,(t).rotation.z,\
+ (t).scale.x,(t).scale.y,(t).scale.z)
+
+static inline void S3L_transform3DInit(S3L_Transform3D *t);
+
+void S3L_lookAt(S3L_Vec4 pointTo, S3L_Transform3D *t);
+
+void S3L_transform3DSet(
+ S3L_Unit tx,
+ S3L_Unit ty,
+ S3L_Unit tz,
+ S3L_Unit rx,
+ S3L_Unit ry,
+ S3L_Unit rz,
+ S3L_Unit sx,
+ S3L_Unit sy,
+ S3L_Unit sz,
+ S3L_Transform3D *t);
+
+/** Converts rotation transformation to three direction vectors of given length
+ (any one can be NULL, in which case it won't be computed). */
+void S3L_rotationToDirections(
+ S3L_Vec4 rotation,
+ S3L_Unit length,
+ S3L_Vec4 *forw,
+ S3L_Vec4 *right,
+ S3L_Vec4 *up);
+
+/** 4x4 matrix, used mostly for 3D transforms. The indexing is this:
+ matrix[column][row]. */
+typedef S3L_Unit S3L_Mat4[4][4];
+
+#define S3L_logMat4(m)\
+ printf("Mat4:\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n"\
+ ,(m)[0][0],(m)[1][0],(m)[2][0],(m)[3][0],\
+ (m)[0][1],(m)[1][1],(m)[2][1],(m)[3][1],\
+ (m)[0][2],(m)[1][2],(m)[2][2],(m)[3][2],\
+ (m)[0][3],(m)[1][3],(m)[2][3],(m)[3][3])
+
+/** Initializes a 4x4 matrix to identity. */
+static inline void S3L_mat4Init(S3L_Mat4 m);
+
+void S3L_mat4Copy(S3L_Mat4 src, S3L_Mat4 dst);
+
+void S3L_mat4Transpose(S3L_Mat4 m);
+
+void S3L_makeTranslationMat(
+ S3L_Unit offsetX,
+ S3L_Unit offsetY,
+ S3L_Unit offsetZ,
+ S3L_Mat4 m);
+
+/** Makes a scaling matrix. DON'T FORGET: scale of 1.0 is set with
+ S3L_FRACTIONS_PER_UNIT! */
+void S3L_makeScaleMatrix(
+ S3L_Unit scaleX,
+ S3L_Unit scaleY,
+ S3L_Unit scaleZ,
+ S3L_Mat4 m);
+
+/** Makes a matrix for rotation in the ZXY order. */
+void S3L_makeRotationMatrixZXY(
+ S3L_Unit byX,
+ S3L_Unit byY,
+ S3L_Unit byZ,
+ S3L_Mat4 m);
+
+void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 m);
+void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 m);
+
+/** Multiplies a vector by a matrix with normalization by
+ S3L_FRACTIONS_PER_UNIT. Result is stored in the input vector. */
+void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 m);
+
+/** Same as S3L_vec4Xmat4 but faster, because this version doesn't compute the
+ W component of the result, which is usually not needed. */
+void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 m);
+
+/** Multiplies two matrices with normalization by S3L_FRACTIONS_PER_UNIT.
+ Result is stored in the first matrix. The result represents a transformation
+ that has the same effect as applying the transformation represented by m1 and
+ then m2 (in that order). */
+void S3L_mat4Xmat4(S3L_Mat4 m1, S3L_Mat4 m2);
+
+typedef struct
+{
+ S3L_Unit focalLength; ///< Defines the field of view (FOV).
+ S3L_Transform3D transform;
+} S3L_Camera;
+
+void S3L_cameraInit(S3L_Camera *camera);
+
+typedef struct
+{
+ uint8_t backfaceCulling; /**< What backface culling to use. Possible
+ values:
+ - 0 none
+ - 1 clock-wise
+ - 2 counter clock-wise */
+ int8_t visible; /**< Can be used to easily hide the model. */
+} S3L_DrawConfig;
+
+void S3L_drawConfigInit(S3L_DrawConfig *config);
+
+typedef struct
+{
+ const S3L_Unit *vertices;
+ S3L_Index vertexCount;
+ const S3L_Index *triangles;
+ S3L_Index triangleCount;
+ S3L_Transform3D transform;
+ S3L_Mat4 *customTransformMatrix; /**< This can be used to override the
+ transform (if != 0) with a custom
+ transform matrix, which is more
+ general. */
+ S3L_DrawConfig config;
+} S3L_Model3D; ///< Represents a 3D model.
+
+void S3L_model3DInit(
+ const S3L_Unit *vertices,
+ S3L_Index vertexCount,
+ const S3L_Index *triangles,
+ S3L_Index triangleCount,
+ S3L_Model3D *model);
+
+typedef struct
+{
+ S3L_Model3D *models;
+ S3L_Index modelCount;
+ S3L_Camera camera;
+} S3L_Scene; ///< Represent the 3D scene to be rendered.
+
+void S3L_sceneInit(
+ S3L_Model3D *models,
+ S3L_Index modelCount,
+ S3L_Scene *scene);
+
+typedef struct
+{
+ S3L_ScreenCoord x; ///< Screen X coordinate.
+ S3L_ScreenCoord y; ///< Screen Y coordinate.
+
+ S3L_Unit barycentric[3]; /**< Barycentric coords correspond to the three
+ vertices. These serve to locate the pixel on a
+ triangle and interpolate values between its
+ three points. Each one goes from 0 to
+ S3L_FRACTIONS_PER_UNIT (including), but due to
+ rounding error may fall outside this range (you
+ can use S3L_correctBarycentricCoords to fix this
+ for the price of some performance). The sum of
+ the three coordinates will always be exactly
+ S3L_FRACTIONS_PER_UNIT. */
+ S3L_Index modelIndex; ///< Model index within the scene.
+ S3L_Index triangleIndex; ///< Triangle index within the model.
+ uint32_t triangleID; /**< Unique ID of the triangle withing the whole
+ scene. This can be used e.g. by a cache to
+ quickly find out if a triangle has changed. */
+ S3L_Unit depth; ///< Depth (only if depth is turned on).
+ S3L_Unit previousZ; /**< Z-buffer value (not necessarily world depth in
+ S3L_Units!) that was in the z-buffer on the
+ pixels position before this pixel was
+ rasterized. This can be used to set the value
+ back, e.g. for transparency. */
+ S3L_ScreenCoord triangleSize[2]; /**< Rasterized triangle width and height,
+ can be used e.g. for MIP mapping. */
+} S3L_PixelInfo; /**< Used to pass the info about a rasterized pixel
+ (fragment) to the user-defined drawing func. */
+
+static inline void S3L_pixelInfoInit(S3L_PixelInfo *p);
+
+/** Corrects barycentric coordinates so that they exactly meet the defined
+ conditions (each fall into <0,S3L_FRACTIONS_PER_UNIT>, sum =
+ S3L_FRACTIONS_PER_UNIT). Note that doing this per-pixel can slow the program
+ down significantly. */
+static inline void S3L_correctBarycentricCoords(S3L_Unit barycentric[3]);
+
+// general helper functions
+static inline S3L_Unit S3L_abs(S3L_Unit value);
+static inline S3L_Unit S3L_min(S3L_Unit v1, S3L_Unit v2);
+static inline S3L_Unit S3L_max(S3L_Unit v1, S3L_Unit v2);
+static inline S3L_Unit S3L_clamp(S3L_Unit v, S3L_Unit v1, S3L_Unit v2);
+static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod);
+static inline S3L_Unit S3L_nonZero(S3L_Unit value);
+static inline S3L_Unit S3L_zeroClamp(S3L_Unit value);
+
+S3L_Unit S3L_sin(S3L_Unit x);
+S3L_Unit S3L_asin(S3L_Unit x);
+static inline S3L_Unit S3L_cos(S3L_Unit x);
+
+S3L_Unit S3L_vec3Length(S3L_Vec4 v);
+S3L_Unit S3L_sqrt(S3L_Unit value);
+
+/** Projects a single point from 3D space to the screen space (pixels), which
+ can be useful e.g. for drawing sprites. The w component of input and result
+ holds the point size. If this size is 0 in the result, the sprite is outside
+ the view. */
+void project3DPointToScreen(
+ S3L_Vec4 point,
+ S3L_Camera camera,
+ S3L_Vec4 *result);
+
+/** Computes a normalized normal of given triangle. */
+void S3L_triangleNormal(S3L_Vec4 t0, S3L_Vec4 t1, S3L_Vec4 t2,
+ S3L_Vec4 *n);
+
+/** Helper function for retrieving per-vertex indexed values from an array,
+ e.g. texturing (UV) coordinates. The 'indices' array contains three indices
+ for each triangle, each index pointing into 'values' array, which contains
+ the values, each one consisting of 'numComponents' components (e.g. 2 for
+ UV coordinates). The three values are retrieved into 'v0', 'v1' and 'v2'
+ vectors (into x, y, z and w, depending on 'numComponents'). This function is
+ meant to be used per-triangle (typically from a cache), NOT per-pixel, as it
+ is not as fast as possible! */
+void S3L_getIndexedTriangleValues(
+ S3L_Index triangleIndex,
+ const S3L_Index *indices,
+ const S3L_Unit *values,
+ uint8_t numComponents,
+ S3L_Vec4 *v0,
+ S3L_Vec4 *v1,
+ S3L_Vec4 *v2);
+
+/** Computes a normalized normal for every vertex of given model (this is
+ relatively slow and SHOUDN'T be done each frame). The dst array must have a
+ sufficient size preallocated! The size is: number of model vertices * 3 *
+ sizeof(S3L_Unit). Note that for advanced allowing sharp edges it is not
+ sufficient to have per-vertex normals, but must be per-triangle. This
+ function doesn't support this.
+
+ The function computes a normal for each vertex by averaging normals of
+ the triangles containing the vertex. The maximum number of these triangle
+ normals that will be averaged is set with
+ S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE. */
+void S3L_computeModelNormals(S3L_Model3D model, S3L_Unit *dst,
+ int8_t transformNormals);
+
+/** Interpolated between two values, v1 and v2, in the same ratio as t is to
+ tMax. Does NOT prevent zero division. */
+static inline S3L_Unit S3L_interpolate(
+ S3L_Unit v1,
+ S3L_Unit v2,
+ S3L_Unit t,
+ S3L_Unit tMax);
+
+/** Same as S3L_interpolate but with v1 == 0. Should be faster. */
+static inline S3L_Unit S3L_interpolateFrom0(
+ S3L_Unit v2,
+ S3L_Unit t,
+ S3L_Unit tMax);
+
+/** Like S3L_interpolate, but uses a parameter that goes from 0 to
+ S3L_FRACTIONS_PER_UNIT - 1, which can be faster. */
+static inline S3L_Unit S3L_interpolateByUnit(
+ S3L_Unit v1,
+ S3L_Unit v2,
+ S3L_Unit t);
+
+/** Same as S3L_interpolateByUnit but with v1 == 0. Should be faster. */
+static inline S3L_Unit S3L_interpolateByUnitFrom0(
+ S3L_Unit v2,
+ S3L_Unit t);
+
+static inline S3L_Unit S3L_distanceManhattan(S3L_Vec4 a, S3L_Vec4 b);
+
+/** Returns a value interpolated between the three triangle vertices based on
+ barycentric coordinates. */
+static inline S3L_Unit S3L_interpolateBarycentric(
+ S3L_Unit value0,
+ S3L_Unit value1,
+ S3L_Unit value2,
+ S3L_Unit barycentric[3]);
+
+static inline void S3L_mapProjectionPlaneToScreen(
+ S3L_Vec4 point,
+ S3L_ScreenCoord *screenX,
+ S3L_ScreenCoord *screenY);
+
+/** Draws a triangle according to given config. The vertices are specified in
+ Screen Space space (pixels). If perspective correction is enabled, each
+ vertex has to have a depth (Z position in camera space) specified in the Z
+ component. */
+void S3L_drawTriangle(
+ S3L_Vec4 point0,
+ S3L_Vec4 point1,
+ S3L_Vec4 point2,
+ S3L_Index modelIndex,
+ S3L_Index triangleIndex);
+
+/** This should be called before rendering each frame. The function clears
+ buffers and does potentially other things needed for the frame. */
+void S3L_newFrame(void);
+
+void S3L_zBufferClear(void);
+void S3L_stencilBufferClear(void);
+
+/** Writes a value (not necessarily depth! depends on the format of z-buffer)
+ to z-buffer (if enabled). Does NOT check boundaries! */
+void S3L_zBufferWrite(S3L_ScreenCoord x, S3L_ScreenCoord y, S3L_Unit value);
+
+/** Reads a value (not necessarily depth! depends on the format of z-buffer)
+ from z-buffer (if enabled). Does NOT check boundaries! */
+S3L_Unit S3L_zBufferRead(S3L_ScreenCoord x, S3L_ScreenCoord y);
+
+static inline void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle);
+
+/** Predefined vertices of a cube to simply insert in an array. These come with
+ S3L_CUBE_TRIANGLES and S3L_CUBE_TEXCOORDS. */
+#define S3L_CUBE_VERTICES(m)\
+ /* 0 front, bottom, right */\
+ m/2, -m/2, -m/2,\
+ /* 1 front, bottom, left */\
+-m/2, -m/2, -m/2,\
+ /* 2 front, top, right */\
+ m/2, m/2, -m/2,\
+ /* 3 front, top, left */\
+-m/2, m/2, -m/2,\
+ /* 4 back, bottom, right */\
+ m/2, -m/2, m/2,\
+ /* 5 back, bottom, left */\
+-m/2, -m/2, m/2,\
+ /* 6 back, top, right */\
+ m/2, m/2, m/2,\
+ /* 7 back, top, left */\
+-m/2, m/2, m/2
+
+#define S3L_CUBE_VERTEX_COUNT 8
+
+/** Predefined triangle indices of a cube, to be used with S3L_CUBE_VERTICES
+ and S3L_CUBE_TEXCOORDS. */
+#define S3L_CUBE_TRIANGLES\
+ 3, 0, 2, /* front */\
+ 1, 0, 3,\
+ 0, 4, 2, /* right */\
+ 2, 4, 6,\
+ 4, 5, 6, /* back */\
+ 7, 6, 5,\
+ 3, 7, 1, /* left */\
+ 1, 7, 5,\
+ 6, 3, 2, /* top */\
+ 7, 3, 6,\
+ 1, 4, 0, /* bottom */\
+ 5, 4, 1
+
+#define S3L_CUBE_TRIANGLE_COUNT 12
+
+/** Predefined texture coordinates of a cube, corresponding to triangles (NOT
+ vertices), to be used with S3L_CUBE_VERTICES and S3L_CUBE_TRIANGLES. */
+#define S3L_CUBE_TEXCOORDS(m)\
+ 0,0, m,m, m,0,\
+ 0,m, m,m, 0,0,\
+ m,m, m,0, 0,m,\
+ 0,m, m,0, 0,0,\
+ m,0, 0,0, m,m,\
+ 0,m, m,m, 0,0,\
+ 0,0, 0,m, m,0,\
+ m,0, 0,m, m,m,\
+ 0,0, m,m, m,0,\
+ 0,m, m,m, 0,0,\
+ m,0, 0,m, m,m,\
+ 0,0, 0,m, m,0
+
+//=============================================================================
+// privates
+
+#define S3L_UNUSED(what) (void)(what) ///< helper macro for unused vars
+
+#define S3L_HALF_RESOLUTION_X (S3L_RESOLUTION_X >> 1)
+#define S3L_HALF_RESOLUTION_Y (S3L_RESOLUTION_Y >> 1)
+
+#define S3L_PROJECTION_PLANE_HEIGHT\
+ ((S3L_RESOLUTION_Y * S3L_FRACTIONS_PER_UNIT * 2) / S3L_RESOLUTION_X)
+
+#if S3L_Z_BUFFER == 1
+ #define S3L_MAX_DEPTH 2147483647
+ S3L_Unit S3L_zBuffer[S3L_MAX_PIXELS];
+ #define S3L_zBufferFormat(depth) (depth)
+#elif S3L_Z_BUFFER == 2
+ #define S3L_MAX_DEPTH 255
+ uint8_t S3L_zBuffer[S3L_MAX_PIXELS];
+ #define S3L_zBufferFormat(depth)\
+ S3L_min(255,(depth) >> S3L_REDUCED_Z_BUFFER_GRANULARITY)
+#endif
+
+#if S3L_Z_BUFFER
+static inline int8_t S3L_zTest(
+ S3L_ScreenCoord x,
+ S3L_ScreenCoord y,
+ S3L_Unit depth)
+{
+ uint32_t index = y * S3L_RESOLUTION_X + x;
+
+ depth = S3L_zBufferFormat(depth);
+
+#if S3L_Z_BUFFER == 2
+ #define cmp <= /* For reduced z-buffer we need equality test, because
+ otherwise pixels at the maximum depth (255) would never be
+ drawn over the background (which also has the depth of
+ 255). */
+#else
+ #define cmp < /* For normal z-buffer we leave out equality test to not waste
+ time by drawing over already drawn pixls. */
+#endif
+
+ if (depth cmp S3L_zBuffer[index])
+ {
+ S3L_zBuffer[index] = depth;
+ return 1;
+ }
+
+#undef cmp
+
+ return 0;
+}
+#endif
+
+S3L_Unit S3L_zBufferRead(S3L_ScreenCoord x, S3L_ScreenCoord y)
+{
+#if S3L_Z_BUFFER
+ return S3L_zBuffer[y * S3L_RESOLUTION_X + x];
+#else
+ S3L_UNUSED(x);
+ S3L_UNUSED(y);
+
+ return 0;
+#endif
+}
+
+void S3L_zBufferWrite(S3L_ScreenCoord x, S3L_ScreenCoord y, S3L_Unit value)
+{
+#if S3L_Z_BUFFER
+ S3L_zBuffer[y * S3L_RESOLUTION_X + x] = value;
+#else
+ S3L_UNUSED(x);
+ S3L_UNUSED(y);
+ S3L_UNUSED(value);
+#endif
+}
+
+#if S3L_STENCIL_BUFFER
+ #define S3L_STENCIL_BUFFER_SIZE\
+ ((S3L_RESOLUTION_X * S3L_RESOLUTION_Y - 1) / 8 + 1)
+
+uint8_t S3L_stencilBuffer[S3L_STENCIL_BUFFER_SIZE];
+
+static inline int8_t S3L_stencilTest(
+ S3L_ScreenCoord x,
+ S3L_ScreenCoord y)
+{
+ uint32_t index = y * S3L_RESOLUTION_X + x;
+ uint32_t bit = (index & 0x00000007);
+ index = index >> 3;
+
+ uint8_t val = S3L_stencilBuffer[index];
+
+ if ((val >> bit) & 0x1)
+ return 0;
+
+ S3L_stencilBuffer[index] = val | (0x1 << bit);
+
+ return 1;
+}
+#endif
+
+#define S3L_COMPUTE_LERP_DEPTH\
+ (S3L_COMPUTE_DEPTH && (S3L_PERSPECTIVE_CORRECTION == 0))
+
+#define S3L_SIN_TABLE_LENGTH 128
+
+static const S3L_Unit S3L_sinTable[S3L_SIN_TABLE_LENGTH] =
+{
+ /* 511 was chosen here as a highest number that doesn't overflow during
+ compilation for S3L_FRACTIONS_PER_UNIT == 1024 */
+
+ (0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511,
+ (12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511,
+ (25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511,
+ (37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511,
+ (50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511,
+ (62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511,
+ (74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511,
+ (87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511,
+ (99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511,
+ (111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511,
+ (124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511,
+ (136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511,
+ (148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511,
+ (160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511,
+ (172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511,
+ (183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511,
+ (195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511,
+ (207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511,
+ (218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511,
+ (229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511,
+ (240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511,
+ (251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511,
+ (262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511,
+ (273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511,
+ (283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511,
+ (294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511,
+ (304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511,
+ (314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511,
+ (324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511,
+ (333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511,
+ (343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511,
+ (352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511,
+ (361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511,
+ (370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511,
+ (378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511,
+ (386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511,
+ (395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511,
+ (402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511,
+ (410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511,
+ (417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511,
+ (424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511,
+ (431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511,
+ (438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511,
+ (444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511,
+ (450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511,
+ (456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511,
+ (461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511,
+ (467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511,
+ (472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511,
+ (476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511,
+ (481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511,
+ (485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511,
+ (488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511,
+ (492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511,
+ (495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511,
+ (498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511,
+ (501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511,
+ (503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511,
+ (505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511,
+ (507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511,
+ (508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511,
+ (509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
+ (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
+ (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511
+};
+
+#define S3L_SIN_TABLE_UNIT_STEP\
+ (S3L_FRACTIONS_PER_UNIT / (S3L_SIN_TABLE_LENGTH * 4))
+
+void S3L_vec4Init(S3L_Vec4 *v)
+{
+ v->x = 0; v->y = 0; v->z = 0; v->w = S3L_FRACTIONS_PER_UNIT;
+}
+
+void S3L_vec4Set(S3L_Vec4 *v, S3L_Unit x, S3L_Unit y, S3L_Unit z, S3L_Unit w)
+{
+ v->x = x;
+ v->y = y;
+ v->z = z;
+ v->w = w;
+}
+
+void S3L_vec3Add(S3L_Vec4 *result, S3L_Vec4 added)
+{
+ result->x += added.x;
+ result->y += added.y;
+ result->z += added.z;
+}
+
+void S3L_vec3Sub(S3L_Vec4 *result, S3L_Vec4 substracted)
+{
+ result->x -= substracted.x;
+ result->y -= substracted.y;
+ result->z -= substracted.z;
+}
+
+void S3L_mat4Init(S3L_Mat4 m)
+{
+ #define M(x,y) m[x][y]
+ #define S S3L_FRACTIONS_PER_UNIT
+
+ M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
+ M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
+ M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
+ M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S;
+
+ #undef M
+ #undef S
+}
+
+void S3L_mat4Copy(S3L_Mat4 src, S3L_Mat4 dst)
+{
+ for (uint8_t j = 0; j < 4; ++j)
+ for (uint8_t i = 0; i < 4; ++i)
+ dst[i][j] = src[i][j];
+}
+
+S3L_Unit S3L_vec3Dot(S3L_Vec4 a, S3L_Vec4 b)
+{
+ return (a.x * b.x + a.y * b.y + a.z * b.z) / S3L_FRACTIONS_PER_UNIT;
+}
+
+void S3L_reflect(S3L_Vec4 toLight, S3L_Vec4 normal, S3L_Vec4 *result)
+{
+ S3L_Unit d = 2 * S3L_vec3Dot(toLight,normal);
+
+ result->x = (normal.x * d) / S3L_FRACTIONS_PER_UNIT - toLight.x;
+ result->y = (normal.y * d) / S3L_FRACTIONS_PER_UNIT - toLight.y;
+ result->z = (normal.z * d) / S3L_FRACTIONS_PER_UNIT - toLight.z;
+}
+
+void S3L_vec3Cross(S3L_Vec4 a, S3L_Vec4 b, S3L_Vec4 *result)
+{
+ result->x = a.y * b.z - a.z * b.y;
+ result->y = a.z * b.x - a.x * b.z;
+ result->z = a.x * b.y - a.y * b.x;
+}
+
+void S3L_triangleNormal(S3L_Vec4 t0, S3L_Vec4 t1, S3L_Vec4 t2, S3L_Vec4 *n)
+{
+ #define ANTI_OVERFLOW 32
+
+ t1.x = (t1.x - t0.x) / ANTI_OVERFLOW;
+ t1.y = (t1.y - t0.y) / ANTI_OVERFLOW;
+ t1.z = (t1.z - t0.z) / ANTI_OVERFLOW;
+
+ t2.x = (t2.x - t0.x) / ANTI_OVERFLOW;
+ t2.y = (t2.y - t0.y) / ANTI_OVERFLOW;
+ t2.z = (t2.z - t0.z) / ANTI_OVERFLOW;
+
+ #undef ANTI_OVERFLOW
+
+ S3L_vec3Cross(t1,t2,n);
+
+ S3L_vec3Normalize(n);
+}
+
+void S3L_getIndexedTriangleValues(
+ S3L_Index triangleIndex,
+ const S3L_Index *indices,
+ const S3L_Unit *values,
+ uint8_t numComponents,
+ S3L_Vec4 *v0,
+ S3L_Vec4 *v1,
+ S3L_Vec4 *v2)
+{
+ uint32_t i0, i1;
+ S3L_Unit *value;
+
+ i0 = triangleIndex * 3;
+ i1 = indices[i0] * numComponents;
+ value = (S3L_Unit *) v0;
+
+ if (numComponents > 4)
+ numComponents = 4;
+
+ for (uint8_t j = 0; j < numComponents; ++j)
+ {
+ *value = values[i1];
+ i1++;
+ value++;
+ }
+
+ i0++;
+ i1 = indices[i0] * numComponents;
+ value = (S3L_Unit *) v1;
+
+ for (uint8_t j = 0; j < numComponents; ++j)
+ {
+ *value = values[i1];
+ i1++;
+ value++;
+ }
+
+ i0++;
+ i1 = indices[i0] * numComponents;
+ value = (S3L_Unit *) v2;
+
+ for (uint8_t j = 0; j < numComponents; ++j)
+ {
+ *value = values[i1];
+ i1++;
+ value++;
+ }
+}
+
+void S3L_computeModelNormals(S3L_Model3D model, S3L_Unit *dst,
+ int8_t transformNormals)
+{
+ S3L_Index vPos = 0;
+
+ S3L_Vec4 n;
+
+ n.w = 0;
+
+ S3L_Vec4 ns[S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE];
+ S3L_Index normalCount;
+
+ for (uint32_t i = 0; i < model.vertexCount; ++i)
+ {
+ normalCount = 0;
+
+ for (uint32_t j = 0; j < model.triangleCount * 3; j += 3)
+ {
+ if (
+ (model.triangles[j] == i) ||
+ (model.triangles[j + 1] == i) ||
+ (model.triangles[j + 2] == i))
+ {
+ S3L_Vec4 t0, t1, t2;
+ uint32_t vIndex;
+
+ #define getVertex(n)\
+ vIndex = model.triangles[j + n] * 3;\
+ t##n.x = model.vertices[vIndex];\
+ vIndex++;\
+ t##n.y = model.vertices[vIndex];\
+ vIndex++;\
+ t##n.z = model.vertices[vIndex];
+
+ getVertex(0)
+ getVertex(1)
+ getVertex(2)
+
+ #undef getVertex
+
+ S3L_triangleNormal(t0,t1,t2,&(ns[normalCount]));
+
+ normalCount++;
+
+ if (normalCount >= S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE)
+ break;
+ }
+ }
+
+ n.x = S3L_FRACTIONS_PER_UNIT;
+ n.y = 0;
+ n.z = 0;
+
+ if (normalCount != 0)
+ {
+ // compute average
+
+ n.x = 0;
+
+ for (uint8_t i = 0; i < normalCount; ++i)
+ {
+ n.x += ns[i].x;
+ n.y += ns[i].y;
+ n.z += ns[i].z;
+ }
+
+ n.x /= normalCount;
+ n.y /= normalCount;
+ n.z /= normalCount;
+
+ S3L_vec3Normalize(&n);
+ }
+
+ dst[vPos] = n.x;
+ vPos++;
+
+ dst[vPos] = n.y;
+ vPos++;
+
+ dst[vPos] = n.z;
+ vPos++;
+ }
+
+ S3L_Mat4 m;
+
+ S3L_makeWorldMatrix(model.transform,m);
+
+ if (transformNormals)
+ for (S3L_Index i = 0; i < model.vertexCount * 3; i += 3)
+ {
+ n.x = dst[i];
+ n.y = dst[i + 1];
+ n.z = dst[i + 2];
+
+ S3L_vec4Xmat4(&n,m);
+
+ dst[i] = n.x;
+ dst[i + 1] = n.y;
+ dst[i + 2] = n.z;
+ }
+}
+
+void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 m)
+{
+ S3L_Vec4 vBackup;
+
+ vBackup.x = v->x;
+ vBackup.y = v->y;
+ vBackup.z = v->z;
+ vBackup.w = v->w;
+
+ #define dotCol(col)\
+ ((vBackup.x * m[col][0]) +\
+ (vBackup.y * m[col][1]) +\
+ (vBackup.z * m[col][2]) +\
+ (vBackup.w * m[col][3])) / S3L_FRACTIONS_PER_UNIT
+
+ v->x = dotCol(0);
+ v->y = dotCol(1);
+ v->z = dotCol(2);
+ v->w = dotCol(3);
+}
+
+void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 m)
+{
+ S3L_Vec4 vBackup;
+
+ #undef dotCol
+ #define dotCol(col)\
+ (vBackup.x * m[col][0]) / S3L_FRACTIONS_PER_UNIT +\
+ (vBackup.y * m[col][1]) / S3L_FRACTIONS_PER_UNIT +\
+ (vBackup.z * m[col][2]) / S3L_FRACTIONS_PER_UNIT +\
+ m[col][3]
+
+ vBackup.x = v->x;
+ vBackup.y = v->y;
+ vBackup.z = v->z;
+ vBackup.w = v->w;
+
+ v->x = dotCol(0);
+ v->y = dotCol(1);
+ v->z = dotCol(2);
+ v->w = S3L_FRACTIONS_PER_UNIT;
+}
+
+#undef dotCol
+
+S3L_Unit S3L_abs(S3L_Unit value)
+{
+ return value * (((value >= 0) << 1) - 1);
+}
+
+S3L_Unit S3L_min(S3L_Unit v1, S3L_Unit v2)
+{
+ return v1 >= v2 ? v2 : v1;
+}
+
+S3L_Unit S3L_max(S3L_Unit v1, S3L_Unit v2)
+{
+ return v1 >= v2 ? v1 : v2;
+}
+
+S3L_Unit S3L_clamp(S3L_Unit v, S3L_Unit v1, S3L_Unit v2)
+{
+ return v >= v1 ? (v <= v2 ? v : v2) : v1;
+}
+
+S3L_Unit S3L_zeroClamp(S3L_Unit value)
+{
+ return (value * (value >= 0));
+}
+
+S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod)
+{
+ return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
+}
+
+S3L_Unit S3L_nonZero(S3L_Unit value)
+{
+ return (value + (value == 0));
+}
+
+S3L_Unit S3L_interpolate(S3L_Unit v1, S3L_Unit v2, S3L_Unit t, S3L_Unit tMax)
+{
+ return v1 + ((v2 - v1) * t) / tMax;
+}
+
+S3L_Unit S3L_interpolateByUnit(S3L_Unit v1, S3L_Unit v2, S3L_Unit t)
+{
+ return v1 + ((v2 - v1) * t) / S3L_FRACTIONS_PER_UNIT;
+}
+
+S3L_Unit S3L_interpolateByUnitFrom0(S3L_Unit v2, S3L_Unit t)
+{
+ return (v2 * t) / S3L_FRACTIONS_PER_UNIT;
+}
+
+S3L_Unit S3L_interpolateFrom0(S3L_Unit v2, S3L_Unit t, S3L_Unit tMax)
+{
+ return (v2 * t) / tMax;
+}
+
+S3L_Unit S3L_distanceManhattan(S3L_Vec4 a, S3L_Vec4 b)
+{
+ return
+ S3L_abs(a.x - b.x) +
+ S3L_abs(a.y - b.y) +
+ S3L_abs(a.z - b.z);
+}
+
+void S3L_mat4Xmat4(S3L_Mat4 m1, S3L_Mat4 m2)
+{
+ S3L_Mat4 mat1;
+
+ for (uint16_t row = 0; row < 4; ++row)
+ for (uint16_t col = 0; col < 4; ++col)
+ mat1[col][row] = m1[col][row];
+
+ for (uint16_t row = 0; row < 4; ++row)
+ for (uint16_t col = 0; col < 4; ++col)
+ {
+ m1[col][row] = 0;
+
+ for (uint16_t i = 0; i < 4; ++i)
+ m1[col][row] +=
+ (mat1[i][row] * m2[col][i]) / S3L_FRACTIONS_PER_UNIT;
+ }
+}
+
+S3L_Unit S3L_sin(S3L_Unit x)
+{
+ x = S3L_wrap(x / S3L_SIN_TABLE_UNIT_STEP,S3L_SIN_TABLE_LENGTH * 4);
+ int8_t positive = 1;
+
+ if (x < S3L_SIN_TABLE_LENGTH)
+ {
+ }
+ else if (x < S3L_SIN_TABLE_LENGTH * 2)
+ {
+ x = S3L_SIN_TABLE_LENGTH * 2 - x - 1;
+ }
+ else if (x < S3L_SIN_TABLE_LENGTH * 3)
+ {
+ x = x - S3L_SIN_TABLE_LENGTH * 2;
+ positive = 0;
+ }
+ else
+ {
+ x = S3L_SIN_TABLE_LENGTH - (x - S3L_SIN_TABLE_LENGTH * 3) - 1;
+ positive = 0;
+ }
+
+ return positive ? S3L_sinTable[x] : -1 * S3L_sinTable[x];
+}
+
+S3L_Unit S3L_asin(S3L_Unit x)
+{
+ x = S3L_clamp(x,-S3L_FRACTIONS_PER_UNIT,S3L_FRACTIONS_PER_UNIT);
+
+ int8_t sign = 1;
+
+ if (x < 0)
+ {
+ sign = -1;
+ x *= -1;
+ }
+
+ int16_t low = 0;
+ int16_t high = S3L_SIN_TABLE_LENGTH -1;
+ int16_t middle;
+
+ while (low <= high) // binary search
+ {
+ middle = (low + high) / 2;
+
+ S3L_Unit v = S3L_sinTable[middle];
+
+ if (v > x)
+ high = middle - 1;
+ else if (v < x)
+ low = middle + 1;
+ else
+ break;
+ }
+
+ middle *= S3L_SIN_TABLE_UNIT_STEP;
+
+ return sign * middle;
+}
+
+S3L_Unit S3L_cos(S3L_Unit x)
+{
+ return S3L_sin(x + S3L_FRACTIONS_PER_UNIT / 4);
+}
+
+void S3L_correctBarycentricCoords(S3L_Unit barycentric[3])
+{
+ barycentric[0] = S3L_clamp(barycentric[0],0,S3L_FRACTIONS_PER_UNIT);
+ barycentric[1] = S3L_clamp(barycentric[1],0,S3L_FRACTIONS_PER_UNIT);
+
+ S3L_Unit d = S3L_FRACTIONS_PER_UNIT - barycentric[0] - barycentric[1];
+
+ if (d < 0)
+ {
+ barycentric[0] += d;
+ barycentric[2] = 0;
+ }
+ else
+ barycentric[2] = d;
+}
+
+void S3L_makeTranslationMat(
+ S3L_Unit offsetX,
+ S3L_Unit offsetY,
+ S3L_Unit offsetZ,
+ S3L_Mat4 m)
+{
+ #define M(x,y) m[x][y]
+ #define S S3L_FRACTIONS_PER_UNIT
+
+ M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
+ M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
+ M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
+ M(0,3) = offsetX; M(1,3) = offsetY; M(2,3) = offsetZ; M(3,3) = S;
+
+ #undef M
+ #undef S
+}
+
+void S3L_makeScaleMatrix(
+ S3L_Unit scaleX,
+ S3L_Unit scaleY,
+ S3L_Unit scaleZ,
+ S3L_Mat4 m)
+{
+ #define M(x,y) m[x][y]
+
+ M(0,0) = scaleX; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
+ M(0,1) = 0; M(1,1) = scaleY; M(2,1) = 0; M(3,1) = 0;
+ M(0,2) = 0; M(1,2) = 0; M(2,2) = scaleZ; M(3,2) = 0;
+ M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S3L_FRACTIONS_PER_UNIT;
+
+ #undef M
+}
+
+void S3L_makeRotationMatrixZXY(
+ S3L_Unit byX,
+ S3L_Unit byY,
+ S3L_Unit byZ,
+ S3L_Mat4 m)
+{
+ byX *= -1;
+ byY *= -1;
+ byZ *= -1;
+
+ S3L_Unit sx = S3L_sin(byX);
+ S3L_Unit sy = S3L_sin(byY);
+ S3L_Unit sz = S3L_sin(byZ);
+
+ S3L_Unit cx = S3L_cos(byX);
+ S3L_Unit cy = S3L_cos(byY);
+ S3L_Unit cz = S3L_cos(byZ);
+
+ #define M(x,y) m[x][y]
+ #define S S3L_FRACTIONS_PER_UNIT
+
+ M(0,0) = (cy * cz) / S + (sy * sx * sz) / (S * S);
+ M(1,0) = (cx * sz) / S;
+ M(2,0) = (cy * sx * sz) / (S * S) - (cz * sy) / S;
+ M(3,0) = 0;
+
+ M(0,1) = (cz * sy * sx) / (S * S) - (cy * sz) / S;
+ M(1,1) = (cx * cz) / S;
+ M(2,1) = (cy * cz * sx) / (S * S) + (sy * sz) / S;
+ M(3,1) = 0;
+
+ M(0,2) = (cx * sy) / S;
+ M(1,2) = -1 * sx;
+ M(2,2) = (cy * cx) / S;
+ M(3,2) = 0;
+
+ M(0,3) = 0;
+ M(1,3) = 0;
+ M(2,3) = 0;
+ M(3,3) = S3L_FRACTIONS_PER_UNIT;
+
+ #undef M
+ #undef S
+}
+
+S3L_Unit S3L_sqrt(S3L_Unit value)
+{
+ int8_t sign = 1;
+
+ if (value < 0)
+ {
+ sign = -1;
+ value *= -1;
+ }
+
+ uint32_t result = 0;
+ uint32_t a = value;
+ uint32_t b = 1u << 30;
+
+ while (b > a)
+ b >>= 2;
+
+ while (b != 0)
+ {
+ if (a >= result + b)
+ {
+ a -= result + b;
+ result = result + 2 * b;
+ }
+
+ b >>= 2;
+ result >>= 1;
+ }
+
+ return result * sign;
+}
+
+S3L_Unit S3L_vec3Length(S3L_Vec4 v)
+{
+ return S3L_sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
+}
+
+S3L_Unit S3L_vec2Length(S3L_Vec4 v)
+{
+ return S3L_sqrt(v.x * v.x + v.y * v.y);
+}
+
+void S3L_vec3Normalize(S3L_Vec4 *v)
+{
+ #define SCALE 16
+ #define BOTTOM_LIMIT 16
+ #define UPPER_LIMIT 900
+
+ /* Here we try to decide if the vector is too small and would cause
+ inaccurate result due to very its inaccurate length. If so, we scale
+ it up. We can't scale up everything as big vectors overflow in length
+ calculations. */
+
+ if (
+ S3L_abs(v->x) <= BOTTOM_LIMIT &&
+ S3L_abs(v->y) <= BOTTOM_LIMIT &&
+ S3L_abs(v->z) <= BOTTOM_LIMIT)
+ {
+ v->x *= SCALE;
+ v->y *= SCALE;
+ v->z *= SCALE;
+ }
+ else if (
+ S3L_abs(v->x) > UPPER_LIMIT ||
+ S3L_abs(v->y) > UPPER_LIMIT ||
+ S3L_abs(v->z) > UPPER_LIMIT)
+ {
+ v->x /= SCALE;
+ v->y /= SCALE;
+ v->z /= SCALE;
+ }
+
+ #undef SCALE
+ #undef BOTTOM_LIMIT
+ #undef UPPER_LIMIT
+
+ S3L_Unit l = S3L_vec3Length(*v);
+
+ if (l == 0)
+ return;
+
+ v->x = (v->x * S3L_FRACTIONS_PER_UNIT) / l;
+ v->y = (v->y * S3L_FRACTIONS_PER_UNIT) / l;
+ v->z = (v->z * S3L_FRACTIONS_PER_UNIT) / l;
+}
+
+void S3L_vec3NormalizeFast(S3L_Vec4 *v)
+{
+ S3L_Unit l = S3L_vec3Length(*v);
+
+ if (l == 0)
+ return;
+
+ v->x = (v->x * S3L_FRACTIONS_PER_UNIT) / l;
+ v->y = (v->y * S3L_FRACTIONS_PER_UNIT) / l;
+ v->z = (v->z * S3L_FRACTIONS_PER_UNIT) / l;
+}
+
+void S3L_transform3DInit(S3L_Transform3D *t)
+{
+ S3L_vec4Init(&(t->translation));
+ S3L_vec4Init(&(t->rotation));
+ t->scale.x = S3L_FRACTIONS_PER_UNIT;
+ t->scale.y = S3L_FRACTIONS_PER_UNIT;
+ t->scale.z = S3L_FRACTIONS_PER_UNIT;
+ t->scale.w = 0;
+}
+
+/** Performs perspecive division (z-divide). Does NOT check for division by
+ zero. */
+static inline void S3L_perspectiveDivide(S3L_Vec4 *vector,
+ S3L_Unit focalLength)
+{
+ vector->x = (vector->x * focalLength) / vector->z;
+ vector->y = (vector->y * focalLength) / vector->z;
+}
+
+void project3DPointToScreen(
+ S3L_Vec4 point,
+ S3L_Camera camera,
+ S3L_Vec4 *result)
+{
+ S3L_Mat4 m;
+ S3L_makeCameraMatrix(camera.transform,m);
+
+ S3L_Unit s = point.w;
+
+ point.w = S3L_FRACTIONS_PER_UNIT;
+
+ S3L_vec3Xmat4(&point,m);
+
+ point.z = S3L_nonZero(point.z);
+
+ S3L_perspectiveDivide(&point,camera.focalLength);
+
+ S3L_ScreenCoord x, y;
+
+ S3L_mapProjectionPlaneToScreen(point,&x,&y);
+
+ result->x = x;
+ result->y = y;
+ result->z = point.z;
+
+ result->w =
+ (point.z <= 0) ? 0 :
+ (
+ (s * camera.focalLength * S3L_RESOLUTION_X) /
+ (point.z * S3L_FRACTIONS_PER_UNIT)
+ );
+}
+
+void S3L_lookAt(S3L_Vec4 pointTo, S3L_Transform3D *t)
+{
+ S3L_Vec4 v;
+
+ v.x = pointTo.x - t->translation.x;
+ v.y = pointTo.z - t->translation.z;
+
+ S3L_Unit dx = v.x;
+ S3L_Unit l = S3L_vec2Length(v);
+
+ dx = (v.x * S3L_FRACTIONS_PER_UNIT) / S3L_nonZero(l); // normalize
+
+ t->rotation.y = -1 * S3L_asin(dx);
+
+ if (v.y < 0)
+ t->rotation.y = S3L_FRACTIONS_PER_UNIT / 2 - t->rotation.y;
+
+ v.x = pointTo.y - t->translation.y;
+ v.y = l;
+
+ l = S3L_vec2Length(v);
+
+ dx = (v.x * S3L_FRACTIONS_PER_UNIT) / S3L_nonZero(l);
+
+ t->rotation.x = S3L_asin(dx);
+}
+
+void S3L_transform3DSet(
+ S3L_Unit tx,
+ S3L_Unit ty,
+ S3L_Unit tz,
+ S3L_Unit rx,
+ S3L_Unit ry,
+ S3L_Unit rz,
+ S3L_Unit sx,
+ S3L_Unit sy,
+ S3L_Unit sz,
+ S3L_Transform3D *t)
+{
+ t->translation.x = tx;
+ t->translation.y = ty;
+ t->translation.z = tz;
+
+ t->rotation.x = rx;
+ t->rotation.y = ry;
+ t->rotation.z = rz;
+
+ t->scale.x = sx;
+ t->scale.y = sy;
+ t->scale.z = sz;
+}
+
+void S3L_cameraInit(S3L_Camera *camera)
+{
+ camera->focalLength = S3L_FRACTIONS_PER_UNIT;
+ S3L_transform3DInit(&(camera->transform));
+}
+
+void S3L_rotationToDirections(
+ S3L_Vec4 rotation,
+ S3L_Unit length,
+ S3L_Vec4 *forw,
+ S3L_Vec4 *right,
+ S3L_Vec4 *up)
+{
+ S3L_Mat4 m;
+
+ S3L_makeRotationMatrixZXY(rotation.x,rotation.y,rotation.z,m);
+
+ if (forw != 0)
+ {
+ forw->x = 0;
+ forw->y = 0;
+ forw->z = length;
+ S3L_vec3Xmat4(forw,m);
+ }
+
+ if (right != 0)
+ {
+ right->x = length;
+ right->y = 0;
+ right->z = 0;
+ S3L_vec3Xmat4(right,m);
+ }
+
+ if (up != 0)
+ {
+ up->x = 0;
+ up->y = length;
+ up->z = 0;
+ S3L_vec3Xmat4(up,m);
+ }
+}
+
+void S3L_pixelInfoInit(S3L_PixelInfo *p)
+{
+ p->x = 0;
+ p->y = 0;
+ p->barycentric[0] = S3L_FRACTIONS_PER_UNIT;
+ p->barycentric[1] = 0;
+ p->barycentric[2] = 0;
+ p->modelIndex = 0;
+ p->triangleIndex = 0;
+ p->triangleID = 0;
+ p->depth = 0;
+ p->previousZ = 0;
+}
+
+void S3L_model3DInit(
+ const S3L_Unit *vertices,
+ S3L_Index vertexCount,
+ const S3L_Index *triangles,
+ S3L_Index triangleCount,
+ S3L_Model3D *model)
+{
+ model->vertices = vertices;
+ model->vertexCount = vertexCount;
+ model->triangles = triangles;
+ model->triangleCount = triangleCount;
+ model->customTransformMatrix = 0;
+
+ S3L_transform3DInit(&(model->transform));
+ S3L_drawConfigInit(&(model->config));
+}
+
+void S3L_sceneInit(
+ S3L_Model3D *models,
+ S3L_Index modelCount,
+ S3L_Scene *scene)
+{
+ scene->models = models;
+ scene->modelCount = modelCount;
+ S3L_cameraInit(&(scene->camera));
+}
+
+void S3L_drawConfigInit(S3L_DrawConfig *config)
+{
+ config->backfaceCulling = 2;
+ config->visible = 1;
+}
+
+#ifndef S3L_PIXEL_FUNCTION
+ #error Pixel rendering function (S3L_PIXEL_FUNCTION) not specified!
+#endif
+
+static inline void S3L_PIXEL_FUNCTION(S3L_PixelInfo *pixel); // forward decl
+
+/** Serves to accelerate linear interpolation for performance-critical
+ code. Functions such as S3L_interpolate require division to compute each
+ interpolated value, while S3L_FastLerpState only requires a division for
+ the initiation and a shift for retrieving each interpolated value.
+
+ S3L_FastLerpState stores a value and a step, both scaled (shifted by
+ S3L_FAST_LERP_QUALITY) to increase precision. The step is being added to the
+ value, which achieves the interpolation. This will only be useful for
+ interpolations in which we need to get the interpolated value in every step.
+
+ BEWARE! Shifting a negative value is undefined, so handling shifting of
+ negative values has to be done cleverly. */
+typedef struct
+{
+ S3L_Unit valueScaled;
+ S3L_Unit stepScaled;
+} S3L_FastLerpState;
+
+#define S3L_getFastLerpValue(state)\
+ (state.valueScaled >> S3L_FAST_LERP_QUALITY)
+
+#define S3L_stepFastLerp(state)\
+ state.valueScaled += state.stepScaled
+
+static inline S3L_Unit S3L_interpolateBarycentric(
+ S3L_Unit value0,
+ S3L_Unit value1,
+ S3L_Unit value2,
+ S3L_Unit barycentric[3])
+{
+ return
+ (
+ (value0 * barycentric[0]) +
+ (value1 * barycentric[1]) +
+ (value2 * barycentric[2])
+ ) / S3L_FRACTIONS_PER_UNIT;
+}
+
+void S3L_mapProjectionPlaneToScreen(
+ S3L_Vec4 point,
+ S3L_ScreenCoord *screenX,
+ S3L_ScreenCoord *screenY)
+{
+ *screenX =
+ S3L_HALF_RESOLUTION_X +
+ (point.x * S3L_HALF_RESOLUTION_X) / S3L_FRACTIONS_PER_UNIT;
+
+ *screenY =
+ S3L_HALF_RESOLUTION_Y -
+ (point.y * S3L_HALF_RESOLUTION_X) / S3L_FRACTIONS_PER_UNIT;
+}
+
+void S3L_zBufferClear(void)
+{
+#if S3L_Z_BUFFER
+ for (uint32_t i = 0; i < S3L_RESOLUTION_X * S3L_RESOLUTION_Y; ++i)
+ S3L_zBuffer[i] = S3L_MAX_DEPTH;
+#endif
+}
+
+void S3L_stencilBufferClear(void)
+{
+#if S3L_STENCIL_BUFFER
+ for (uint32_t i = 0; i < S3L_STENCIL_BUFFER_SIZE; ++i)
+ S3L_stencilBuffer[i] = 0;
+#endif
+}
+
+void S3L_newFrame(void)
+{
+ S3L_zBufferClear();
+ S3L_stencilBufferClear();
+}
+
+/*
+ the following serves to communicate info about if the triangle has been split
+ and how the barycentrics should be remapped.
+*/
+uint8_t _S3L_projectedTriangleState = 0; // 0 = normal, 1 = cut, 2 = split
+
+#if S3L_NEAR_CROSS_STRATEGY == 3
+S3L_Vec4 _S3L_triangleRemapBarycentrics[6];
+#endif
+
+void S3L_drawTriangle(
+ S3L_Vec4 point0,
+ S3L_Vec4 point1,
+ S3L_Vec4 point2,
+ S3L_Index modelIndex,
+ S3L_Index triangleIndex)
+{
+ S3L_PixelInfo p;
+ S3L_pixelInfoInit(&p);
+ p.modelIndex = modelIndex;
+ p.triangleIndex = triangleIndex;
+ p.triangleID = (modelIndex << 16) | triangleIndex;
+
+ S3L_Vec4 *tPointSS, *lPointSS, *rPointSS; /* points in Screen Space (in
+ S3L_Units, normalized by
+ S3L_FRACTIONS_PER_UNIT) */
+
+ S3L_Unit *barycentric0; // bar. coord that gets higher from L to R
+ S3L_Unit *barycentric1; // bar. coord that gets higher from R to L
+ S3L_Unit *barycentric2; // bar. coord that gets higher from bottom up
+
+ // sort the vertices:
+
+ #define assignPoints(t,a,b)\
+ {\
+ tPointSS = &point##t;\
+ barycentric2 = &(p.barycentric[t]);\
+ if (S3L_triangleWinding(point##t.x,point##t.y,point##a.x,point##a.y,\
+ point##b.x,point##b.y) >= 0)\
+ {\
+ lPointSS = &point##a; rPointSS = &point##b;\
+ barycentric0 = &(p.barycentric[b]);\
+ barycentric1 = &(p.barycentric[a]);\
+ }\
+ else\
+ {\
+ lPointSS = &point##b; rPointSS = &point##a;\
+ barycentric0 = &(p.barycentric[a]);\
+ barycentric1 = &(p.barycentric[b]);\
+ }\
+ }
+
+ if (point0.y <= point1.y)
+ {
+ if (point0.y <= point2.y)
+ assignPoints(0,1,2)
+ else
+ assignPoints(2,0,1)
+ }
+ else
+ {
+ if (point1.y <= point2.y)
+ assignPoints(1,0,2)
+ else
+ assignPoints(2,0,1)
+ }
+
+ #undef assignPoints
+
+#if S3L_FLAT
+ *barycentric0 = S3L_FRACTIONS_PER_UNIT / 3;
+ *barycentric1 = S3L_FRACTIONS_PER_UNIT / 3;
+ *barycentric2 = S3L_FRACTIONS_PER_UNIT - 2 * (S3L_FRACTIONS_PER_UNIT / 3);
+#endif
+
+ p.triangleSize[0] = rPointSS->x - lPointSS->x;
+ p.triangleSize[1] =
+ (rPointSS->y > lPointSS->y ? rPointSS->y : lPointSS->y) - tPointSS->y;
+
+ // now draw the triangle line by line:
+
+ S3L_ScreenCoord splitY; // Y of the vertically middle point of the triangle
+ S3L_ScreenCoord endY; // bottom Y of the whole triangle
+ int splitOnLeft; /* whether splitY is the y coord. of left or right
+ point */
+
+ if (rPointSS->y <= lPointSS->y)
+ {
+ splitY = rPointSS->y;
+ splitOnLeft = 0;
+ endY = lPointSS->y;
+ }
+ else
+ {
+ splitY = lPointSS->y;
+ splitOnLeft = 1;
+ endY = rPointSS->y;
+ }
+
+ S3L_ScreenCoord currentY = tPointSS->y;
+
+ /* We'll be using an algorithm similar to Bresenham line algorithm. The
+ specifics of this algorithm are among others:
+
+ - drawing possibly NON-CONTINUOUS line
+ - NOT tracing the line exactly, but rather rasterizing one the right
+ side of it, according to the pixel CENTERS, INCLUDING the pixel
+ centers
+
+ The principle is this:
+
+ - Move vertically by pixels and accumulate the error (abs(dx/dy)).
+ - If the error is greater than one (crossed the next pixel center), keep
+ moving horizontally and substracting 1 from the error until it is less
+ than 1 again.
+ - To make this INTEGER ONLY, scale the case so that distance between
+ pixels is equal to dy (instead of 1). This way the error becomes
+ dx/dy * dy == dx, and we're comparing the error to (and potentially
+ substracting) 1 * dy == dy. */
+
+ int16_t
+ /* triangle side:
+ left right */
+ lX, rX, // current x position on the screen
+ lDx, rDx, // dx (end point - start point)
+ lDy, rDy, // dy (end point - start point)
+ lInc, rInc, // direction in which to increment (1 or -1)
+ lErr, rErr, // current error (Bresenham)
+ lErrCmp, rErrCmp, // helper for deciding comparison (> vs >=)
+ lErrAdd, rErrAdd, // error value to add in each Bresenham cycle
+ lErrSub, rErrSub; // error value to substract when moving in x direction
+
+ S3L_FastLerpState lSideFLS, rSideFLS;
+
+#if S3L_COMPUTE_LERP_DEPTH
+ S3L_FastLerpState lDepthFLS, rDepthFLS;
+
+ #define initDepthFLS(s,p1,p2)\
+ s##DepthFLS.valueScaled = p1##PointSS->z << S3L_FAST_LERP_QUALITY;\
+ s##DepthFLS.stepScaled = ((p2##PointSS->z << S3L_FAST_LERP_QUALITY) -\
+ s##DepthFLS.valueScaled) / (s##Dy != 0 ? s##Dy : 1);
+#else
+ #define initDepthFLS(s,p1,p2) ;
+#endif
+
+ /* init side for the algorithm, params:
+ s - which side (l or r)
+ p1 - point from (t, l or r)
+ p2 - point to (t, l or r)
+ down - whether the side coordinate goes top-down or vice versa */
+ #define initSide(s,p1,p2,down)\
+ s##X = p1##PointSS->x;\
+ s##Dx = p2##PointSS->x - p1##PointSS->x;\
+ s##Dy = p2##PointSS->y - p1##PointSS->y;\
+ initDepthFLS(s,p1,p2)\
+ s##SideFLS.stepScaled = (S3L_FRACTIONS_PER_UNIT << S3L_FAST_LERP_QUALITY)\
+ / (s##Dy != 0 ? s##Dy : 1);\
+ s##SideFLS.valueScaled = 0;\
+ if (!down)\
+ {\
+ s##SideFLS.valueScaled =\
+ S3L_FRACTIONS_PER_UNIT << S3L_FAST_LERP_QUALITY;\
+ s##SideFLS.stepScaled *= -1;\
+ }\
+ s##Inc = s##Dx >= 0 ? 1 : -1;\
+ if (s##Dx < 0)\
+ {s##Err = 0; s##ErrCmp = 0;}\
+ else\
+ {s##Err = s##Dy; s##ErrCmp = 1;}\
+ s##ErrAdd = S3L_abs(s##Dx);\
+ s##ErrSub = s##Dy != 0 ? s##Dy : 1; /* don't allow 0, could lead to an
+ infinite substracting loop */
+
+ #define stepSide(s)\
+ while (s##Err - s##Dy >= s##ErrCmp)\
+ {\
+ s##X += s##Inc;\
+ s##Err -= s##ErrSub;\
+ }\
+ s##Err += s##ErrAdd;
+
+ initSide(r,t,r,1)
+ initSide(l,t,l,1)
+
+#if S3L_PERSPECTIVE_CORRECTION
+ /* PC is done by linearly interpolating reciprocals from which the corrected
+ velues can be computed. See
+ http://www.lysator.liu.se/~mikaelk/doc/perspectivetexture/ */
+
+ #if S3L_PERSPECTIVE_CORRECTION == 1
+ #define Z_RECIP_NUMERATOR\
+ (S3L_FRACTIONS_PER_UNIT * S3L_FRACTIONS_PER_UNIT * S3L_FRACTIONS_PER_UNIT)
+ #elif S3L_PERSPECTIVE_CORRECTION == 2
+ #define Z_RECIP_NUMERATOR\
+ (S3L_FRACTIONS_PER_UNIT * S3L_FRACTIONS_PER_UNIT)
+ #endif
+ /* ^ This numerator is a number by which we divide values for the
+ reciprocals. For PC == 2 it has to be lower because linear interpolation
+ scaling would make it overflow -- this results in lower depth precision
+ in bigger distance for PC == 2. */
+
+ S3L_Unit
+ tPointRecipZ, lPointRecipZ, rPointRecipZ, /* Reciprocals of the depth of
+ each triangle point. */
+ lRecip0, lRecip1, rRecip0, rRecip1; /* Helper variables for swapping
+ the above after split. */
+
+ tPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(tPointSS->z);
+ lPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(lPointSS->z);
+ rPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(rPointSS->z);
+
+ lRecip0 = tPointRecipZ;
+ lRecip1 = lPointRecipZ;
+ rRecip0 = tPointRecipZ;
+ rRecip1 = rPointRecipZ;
+
+ #define manageSplitPerspective(b0,b1)\
+ b1##Recip0 = b0##PointRecipZ;\
+ b1##Recip1 = b1##PointRecipZ;\
+ b0##Recip0 = b0##PointRecipZ;\
+ b0##Recip1 = tPointRecipZ;
+#else
+ #define manageSplitPerspective(b0,b1) ;
+#endif
+
+ // clip to the screen in y dimension:
+
+ endY = S3L_min(endY,S3L_RESOLUTION_Y);
+
+ /* Clipping above the screen (y < 0) can't be easily done here, will be
+ handled inside the loop. */
+
+ while (currentY < endY) /* draw the triangle from top to bottom -- the
+ bottom-most row is left out because, following
+ from the rasterization rules (see start of the
+ file), it is to never be rasterized. */
+ {
+ if (currentY == splitY) // reached a vertical split of the triangle?
+ {
+ #define manageSplit(b0,b1,s0,s1)\
+ S3L_Unit *tmp = barycentric##b0;\
+ barycentric##b0 = barycentric##b1;\
+ barycentric##b1 = tmp;\
+ s0##SideFLS.valueScaled = (S3L_FRACTIONS_PER_UNIT\
+ << S3L_FAST_LERP_QUALITY) - s0##SideFLS.valueScaled;\
+ s0##SideFLS.stepScaled *= -1;\
+ manageSplitPerspective(s0,s1)
+
+ if (splitOnLeft)
+ {
+ initSide(l,l,r,0);
+ manageSplit(0,2,r,l)
+ }
+ else
+ {
+ initSide(r,r,l,0);
+ manageSplit(1,2,l,r)
+ }
+ }
+
+ stepSide(r)
+ stepSide(l)
+
+ if (currentY >= 0) /* clipping of pixels whose y < 0 (can't be easily done
+ outside the loop because of the Bresenham-like
+ algorithm steps) */
+ {
+ p.y = currentY;
+
+ // draw the horizontal line
+
+#if !S3L_FLAT
+ S3L_Unit rowLength = S3L_nonZero(rX - lX - 1); // prevent zero div
+
+ #if S3L_PERSPECTIVE_CORRECTION
+ S3L_Unit lOverZ, lRecipZ, rOverZ, rRecipZ, lT, rT;
+
+ lT = S3L_getFastLerpValue(lSideFLS);
+ rT = S3L_getFastLerpValue(rSideFLS);
+
+ lOverZ = S3L_interpolateByUnitFrom0(lRecip1,lT);
+ lRecipZ = S3L_interpolateByUnit(lRecip0,lRecip1,lT);
+
+ rOverZ = S3L_interpolateByUnitFrom0(rRecip1,rT);
+ rRecipZ = S3L_interpolateByUnit(rRecip0,rRecip1,rT);
+ #else
+ S3L_FastLerpState b0FLS, b1FLS;
+
+ #if S3L_COMPUTE_LERP_DEPTH
+ S3L_FastLerpState depthFLS;
+
+ depthFLS.valueScaled = lDepthFLS.valueScaled;
+ depthFLS.stepScaled =
+ (rDepthFLS.valueScaled - lDepthFLS.valueScaled) / rowLength;
+ #endif
+
+ b0FLS.valueScaled = 0;
+ b1FLS.valueScaled = lSideFLS.valueScaled;
+
+ b0FLS.stepScaled = rSideFLS.valueScaled / rowLength;
+ b1FLS.stepScaled = -1 * lSideFLS.valueScaled / rowLength;
+ #endif
+#endif
+
+ // clip to the screen in x dimension:
+
+ S3L_ScreenCoord rXClipped = S3L_min(rX,S3L_RESOLUTION_X),
+ lXClipped = lX;
+
+ if (lXClipped < 0)
+ {
+ lXClipped = 0;
+
+#if !S3L_PERSPECTIVE_CORRECTION && !S3L_FLAT
+ b0FLS.valueScaled -= lX * b0FLS.stepScaled;
+ b1FLS.valueScaled -= lX * b1FLS.stepScaled;
+
+ #if S3L_COMPUTE_LERP_DEPTH
+ depthFLS.valueScaled -= lX * depthFLS.stepScaled;
+ #endif
+#endif
+ }
+
+#if S3L_PERSPECTIVE_CORRECTION
+ S3L_ScreenCoord i = lXClipped - lX; /* helper var to save one
+ substraction in the inner
+ loop */
+#endif
+
+#if S3L_PERSPECTIVE_CORRECTION == 2
+ S3L_FastLerpState
+ depthPC, // interpolates depth between row segments
+ b0PC, // interpolates barycentric0 between row segments
+ b1PC; // interpolates barycentric1 between row segments
+
+ /* ^ These interpolate values between row segments (lines of pixels
+ of S3L_PC_APPROX_LENGTH length). After each row segment perspective
+ correction is recomputed. */
+
+ depthPC.valueScaled =
+ (Z_RECIP_NUMERATOR /
+ S3L_nonZero(S3L_interpolate(lRecipZ,rRecipZ,i,rowLength)))
+ << S3L_FAST_LERP_QUALITY;
+
+ b0PC.valueScaled =
+ (
+ S3L_interpolateFrom0(rOverZ,i,rowLength)
+ * depthPC.valueScaled
+ ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
+
+ b1PC.valueScaled =
+ (
+ (lOverZ - S3L_interpolateFrom0(lOverZ,i,rowLength))
+ * depthPC.valueScaled
+ ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
+
+ int8_t rowCount = S3L_PC_APPROX_LENGTH;
+#endif
+
+#if S3L_Z_BUFFER
+ uint32_t zBufferIndex = p.y * S3L_RESOLUTION_X + lXClipped;
+#endif
+
+ // draw the row -- inner loop:
+
+ for (S3L_ScreenCoord x = lXClipped; x < rXClipped; ++x)
+ {
+ int8_t testsPassed = 1;
+
+#if S3L_STENCIL_BUFFER
+ if (!S3L_stencilTest(x,p.y))
+ testsPassed = 0;
+#endif
+ p.x = x;
+
+#if S3L_COMPUTE_DEPTH
+ #if S3L_PERSPECTIVE_CORRECTION == 1
+ p.depth = Z_RECIP_NUMERATOR /
+ S3L_nonZero(S3L_interpolate(lRecipZ,rRecipZ,i,rowLength));
+ #elif S3L_PERSPECTIVE_CORRECTION == 2
+ if (rowCount >= S3L_PC_APPROX_LENGTH)
+ {
+ // init the linear interpolation to the next PC correct value
+
+ rowCount = 0;
+
+ S3L_Unit nextI = i + S3L_PC_APPROX_LENGTH;
+
+ if (nextI < rowLength)
+ {
+ S3L_Unit nextDepthScaled =
+ (
+ Z_RECIP_NUMERATOR /
+ S3L_nonZero(S3L_interpolate(lRecipZ,rRecipZ,nextI,rowLength))
+ ) << S3L_FAST_LERP_QUALITY;
+
+ depthPC.stepScaled =
+ (nextDepthScaled - depthPC.valueScaled) / S3L_PC_APPROX_LENGTH;
+
+ S3L_Unit nextValue =
+ (
+ S3L_interpolateFrom0(rOverZ,nextI,rowLength)
+ * nextDepthScaled
+ ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
+
+ b0PC.stepScaled =
+ (nextValue - b0PC.valueScaled) / S3L_PC_APPROX_LENGTH;
+
+ nextValue =
+ (
+ (lOverZ - S3L_interpolateFrom0(lOverZ,nextI,rowLength))
+ * nextDepthScaled
+ ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
+
+ b1PC.stepScaled =
+ (nextValue - b1PC.valueScaled) / S3L_PC_APPROX_LENGTH;
+ }
+ else
+ {
+ /* A special case where we'd be interpolating outside the triangle.
+ It seems like a valid approach at first, but it creates a bug
+ in a case when the rasaterized triangle is near screen 0 and can
+ actually never reach the extrapolated screen position. So we
+ have to clamp to the actual end of the triangle here. */
+
+ S3L_Unit maxI = S3L_nonZero(rowLength - i);
+
+ S3L_Unit nextDepthScaled =
+ (
+ Z_RECIP_NUMERATOR /
+ S3L_nonZero(rRecipZ)
+ ) << S3L_FAST_LERP_QUALITY;
+
+ depthPC.stepScaled =
+ (nextDepthScaled - depthPC.valueScaled) / maxI;
+
+ S3L_Unit nextValue =
+ (
+ rOverZ
+ * nextDepthScaled
+ ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
+
+ b0PC.stepScaled =
+ (nextValue - b0PC.valueScaled) / maxI;
+
+ b1PC.stepScaled =
+ -1 * b1PC.valueScaled / maxI;
+ }
+ }
+
+ p.depth = S3L_getFastLerpValue(depthPC);
+ #else
+ p.depth = S3L_getFastLerpValue(depthFLS);
+ S3L_stepFastLerp(depthFLS);
+ #endif
+#else // !S3L_COMPUTE_DEPTH
+ p.depth = (tPointSS->z + lPointSS->z + rPointSS->z) / 3;
+#endif
+
+#if S3L_Z_BUFFER
+ p.previousZ = S3L_zBuffer[zBufferIndex];
+
+ zBufferIndex++;
+
+ if (!S3L_zTest(p.x,p.y,p.depth))
+ testsPassed = 0;
+#endif
+
+ if (testsPassed)
+ {
+#if !S3L_FLAT
+ #if S3L_PERSPECTIVE_CORRECTION == 0
+ *barycentric0 = S3L_getFastLerpValue(b0FLS);
+ *barycentric1 = S3L_getFastLerpValue(b1FLS);
+ #elif S3L_PERSPECTIVE_CORRECTION == 1
+ *barycentric0 =
+ (
+ S3L_interpolateFrom0(rOverZ,i,rowLength)
+ * p.depth
+ ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
+
+ *barycentric1 =
+ (
+ (lOverZ - S3L_interpolateFrom0(lOverZ,i,rowLength))
+ * p.depth
+ ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
+ #elif S3L_PERSPECTIVE_CORRECTION == 2
+ *barycentric0 = S3L_getFastLerpValue(b0PC);
+ *barycentric1 = S3L_getFastLerpValue(b1PC);
+ #endif
+
+ *barycentric2 =
+ S3L_FRACTIONS_PER_UNIT - *barycentric0 - *barycentric1;
+#endif
+
+#if S3L_NEAR_CROSS_STRATEGY == 3
+
+if (_S3L_projectedTriangleState != 0)
+{
+ S3L_Unit newBarycentric[3];
+
+ newBarycentric[0] = S3L_interpolateBarycentric(
+ _S3L_triangleRemapBarycentrics[0].x,
+ _S3L_triangleRemapBarycentrics[1].x,
+ _S3L_triangleRemapBarycentrics[2].x,
+ p.barycentric);
+
+ newBarycentric[1] = S3L_interpolateBarycentric(
+ _S3L_triangleRemapBarycentrics[0].y,
+ _S3L_triangleRemapBarycentrics[1].y,
+ _S3L_triangleRemapBarycentrics[2].y,
+ p.barycentric);
+
+ newBarycentric[2] = S3L_interpolateBarycentric(
+ _S3L_triangleRemapBarycentrics[0].z,
+ _S3L_triangleRemapBarycentrics[1].z,
+ _S3L_triangleRemapBarycentrics[2].z,
+ p.barycentric);
+
+ p.barycentric[0] = newBarycentric[0];
+ p.barycentric[1] = newBarycentric[1];
+ p.barycentric[2] = newBarycentric[2];
+}
+#endif
+
+ S3L_PIXEL_FUNCTION(&p);
+ } // tests passed
+
+#if !S3L_FLAT
+ #if S3L_PERSPECTIVE_CORRECTION
+ i++;
+ #if S3L_PERSPECTIVE_CORRECTION == 2
+ rowCount++;
+
+ S3L_stepFastLerp(depthPC);
+ S3L_stepFastLerp(b0PC);
+ S3L_stepFastLerp(b1PC);
+ #endif
+ #else
+ S3L_stepFastLerp(b0FLS);
+ S3L_stepFastLerp(b1FLS);
+ #endif
+#endif
+ } // inner loop
+ } // y clipping
+
+#if !S3L_FLAT
+ S3L_stepFastLerp(lSideFLS);
+ S3L_stepFastLerp(rSideFLS);
+
+ #if S3L_COMPUTE_LERP_DEPTH
+ S3L_stepFastLerp(lDepthFLS);
+ S3L_stepFastLerp(rDepthFLS);
+ #endif
+#endif
+
+ ++currentY;
+ } // row drawing
+
+ #undef manageSplit
+ #undef initPC
+ #undef initSide
+ #undef stepSide
+ #undef Z_RECIP_NUMERATOR
+}
+
+void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle)
+{
+ if (angle < S3L_SIN_TABLE_UNIT_STEP)
+ return; // no visible rotation
+
+ S3L_Unit angleSin = S3L_sin(angle);
+ S3L_Unit angleCos = S3L_cos(angle);
+
+ S3L_Unit xBackup = *x;
+
+ *x =
+ (angleCos * (*x)) / S3L_FRACTIONS_PER_UNIT -
+ (angleSin * (*y)) / S3L_FRACTIONS_PER_UNIT;
+
+ *y =
+ (angleSin * xBackup) / S3L_FRACTIONS_PER_UNIT +
+ (angleCos * (*y)) / S3L_FRACTIONS_PER_UNIT;
+}
+
+void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 m)
+{
+ S3L_makeScaleMatrix(
+ worldTransform.scale.x,
+ worldTransform.scale.y,
+ worldTransform.scale.z,
+ m);
+
+ S3L_Mat4 t;
+
+ S3L_makeRotationMatrixZXY(
+ worldTransform.rotation.x,
+ worldTransform.rotation.y,
+ worldTransform.rotation.z,
+ t);
+
+ S3L_mat4Xmat4(m,t);
+
+ S3L_makeTranslationMat(
+ worldTransform.translation.x,
+ worldTransform.translation.y,
+ worldTransform.translation.z,
+ t);
+
+ S3L_mat4Xmat4(m,t);
+}
+
+void S3L_mat4Transpose(S3L_Mat4 m)
+{
+ S3L_Unit tmp;
+
+ for (uint8_t y = 0; y < 3; ++y)
+ for (uint8_t x = 1 + y; x < 4; ++x)
+ {
+ tmp = m[x][y];
+ m[x][y] = m[y][x];
+ m[y][x] = tmp;
+ }
+}
+
+void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 m)
+{
+ S3L_makeTranslationMat(
+ -1 * cameraTransform.translation.x,
+ -1 * cameraTransform.translation.y,
+ -1 * cameraTransform.translation.z,
+ m);
+
+ S3L_Mat4 r;
+
+ S3L_makeRotationMatrixZXY(
+ cameraTransform.rotation.x,
+ cameraTransform.rotation.y,
+ cameraTransform.rotation.z,
+ r);
+
+ S3L_mat4Transpose(r); // transposing creates an inverse transform
+
+ S3L_mat4Xmat4(m,r);
+}
+
+int8_t S3L_triangleWinding(
+ S3L_ScreenCoord x0,
+ S3L_ScreenCoord y0,
+ S3L_ScreenCoord x1,
+ S3L_ScreenCoord y1,
+ S3L_ScreenCoord x2,
+ S3L_ScreenCoord y2)
+{
+ int32_t winding =
+ (y1 - y0) * (x2 - x1) - (x1 - x0) * (y2 - y1);
+ // ^ cross product for points with z == 0
+
+ return winding > 0 ? 1 : (winding < 0 ? -1 : 0);
+}
+
+/**
+ Checks if given triangle (in Screen Space) is at least partially visible,
+ i.e. returns false if the triangle is either completely outside the frustum
+ (left, right, top, bottom, near) or is invisible due to backface culling.
+*/
+static inline int8_t S3L_triangleIsVisible(
+ S3L_Vec4 p0,
+ S3L_Vec4 p1,
+ S3L_Vec4 p2,
+ uint8_t backfaceCulling)
+{
+ #define clipTest(c,cmp,v)\
+ (p0.c cmp (v) && p1.c cmp (v) && p2.c cmp (v))
+
+ if ( // outside frustum?
+#if S3L_NEAR_CROSS_STRATEGY == 0
+ p0.z <= S3L_NEAR || p1.z <= S3L_NEAR || p2.z <= S3L_NEAR ||
+ // ^ partially in front of NEAR?
+#else
+ clipTest(z,<=,S3L_NEAR) || // completely in front of NEAR?
+#endif
+ clipTest(x,<,0) ||
+ clipTest(x,>=,S3L_RESOLUTION_X) ||
+ clipTest(y,<,0) ||
+ clipTest(y,>,S3L_RESOLUTION_Y)
+ )
+ return 0;
+
+ #undef clipTest
+
+ if (backfaceCulling != 0)
+ {
+ int8_t winding =
+ S3L_triangleWinding(p0.x,p0.y,p1.x,p1.y,p2.x,p2.y);
+
+ if ((backfaceCulling == 1 && winding > 0) ||
+ (backfaceCulling == 2 && winding < 0))
+ return 0;
+ }
+
+ return 1;
+}
+
+#if S3L_SORT != 0
+typedef struct
+{
+ uint8_t modelIndex;
+ S3L_Index triangleIndex;
+ uint16_t sortValue;
+} _S3L_TriangleToSort;
+
+_S3L_TriangleToSort S3L_sortArray[S3L_MAX_TRIANGES_DRAWN];
+uint16_t S3L_sortArrayLength;
+#endif
+
+void _S3L_projectVertex(
+ const S3L_Model3D *model,
+ S3L_Index triangleIndex,
+ uint8_t vertex,
+ S3L_Mat4 projectionMatrix,
+ S3L_Vec4 *result)
+{
+ uint32_t vertexIndex = model->triangles[triangleIndex * 3 + vertex] * 3;
+
+ result->x = model->vertices[vertexIndex];
+ result->y = model->vertices[vertexIndex + 1];
+ result->z = model->vertices[vertexIndex + 2];
+ result->w = S3L_FRACTIONS_PER_UNIT; // needed for translation
+
+ S3L_vec3Xmat4(result,projectionMatrix);
+
+ result->w = result->z;
+ /* We'll keep the non-clamped z in w for sorting. */
+}
+
+void _S3L_mapProjectedVertexToScreen(S3L_Vec4 *vertex, S3L_Unit focalLength)
+{
+ vertex->z = vertex->z >= S3L_NEAR ? vertex->z : S3L_NEAR;
+ /* ^ This firstly prevents zero division in the follwoing z-divide and
+ secondly "pushes" vertices that are in front of near a little bit forward,
+ which makes them behave a bit better. If all three vertices end up exactly
+ on NEAR, the triangle will be culled. */
+
+ S3L_perspectiveDivide(vertex,focalLength);
+
+ S3L_ScreenCoord sX, sY;
+
+ S3L_mapProjectionPlaneToScreen(*vertex,&sX,&sY);
+
+ vertex->x = sX;
+ vertex->y = sY;
+}
+
+/**
+ Projects a triangle to the screen. If enabled, a triangle can be potentially
+ subdivided into two if it crosses the near plane, in which case two projected
+ triangles are returned (the info about splitting or cutting the triangle is
+ passed in global variables, see above).
+*/
+void _S3L_projectTriangle(
+ const S3L_Model3D *model,
+ S3L_Index triangleIndex,
+ S3L_Mat4 matrix,
+ uint32_t focalLength,
+ S3L_Vec4 transformed[6])
+{
+ _S3L_projectVertex(model,triangleIndex,0,matrix,&(transformed[0]));
+ _S3L_projectVertex(model,triangleIndex,1,matrix,&(transformed[1]));
+ _S3L_projectVertex(model,triangleIndex,2,matrix,&(transformed[2]));
+
+ _S3L_projectedTriangleState = 0;
+
+#if S3L_NEAR_CROSS_STRATEGY == 2 || S3L_NEAR_CROSS_STRATEGY == 3
+ uint8_t infront = 0;
+ uint8_t behind = 0;
+ uint8_t infrontI[3];
+ uint8_t behindI[3];
+
+ for (uint8_t i = 0; i < 3; ++i)
+ if (transformed[i].z < S3L_NEAR)
+ {
+ infrontI[infront] = i;
+ infront++;
+ }
+ else
+ {
+ behindI[behind] = i;
+ behind++;
+ }
+
+#if S3L_NEAR_CROSS_STRATEGY == 3
+ for (int i = 0; i < 3; ++i)
+ S3L_vec4Init(&(_S3L_triangleRemapBarycentrics[i]));
+
+ _S3L_triangleRemapBarycentrics[0].x = S3L_FRACTIONS_PER_UNIT;
+ _S3L_triangleRemapBarycentrics[1].y = S3L_FRACTIONS_PER_UNIT;
+ _S3L_triangleRemapBarycentrics[2].z = S3L_FRACTIONS_PER_UNIT;
+#endif
+
+#define interpolateVertex \
+ S3L_Unit ratio =\
+ ((transformed[be].z - S3L_NEAR) * S3L_FRACTIONS_PER_UNIT) /\
+ (transformed[be].z - transformed[in].z);\
+ transformed[in].x = transformed[be].x - \
+ ((transformed[be].x - transformed[in].x) * ratio) /\
+ S3L_FRACTIONS_PER_UNIT;\
+ transformed[in].y = transformed[be].y -\
+ ((transformed[be].y - transformed[in].y) * ratio) /\
+ S3L_FRACTIONS_PER_UNIT;\
+ transformed[in].z = S3L_NEAR;\
+ if (beI != 0) {\
+ beI->x = (beI->x * ratio) / S3L_FRACTIONS_PER_UNIT;\
+ beI->y = (beI->y * ratio) / S3L_FRACTIONS_PER_UNIT;\
+ beI->z = (beI->z * ratio) / S3L_FRACTIONS_PER_UNIT;\
+ ratio = S3L_FRACTIONS_PER_UNIT - ratio;\
+ beI->x += (beB->x * ratio) / S3L_FRACTIONS_PER_UNIT;\
+ beI->y += (beB->y * ratio) / S3L_FRACTIONS_PER_UNIT;\
+ beI->z += (beB->z * ratio) / S3L_FRACTIONS_PER_UNIT; }
+
+ if (infront == 2)
+ {
+ // shift the two vertices forward along the edge
+ for (uint8_t i = 0; i < 2; ++i)
+ {
+ uint8_t be = behindI[0], in = infrontI[i];
+
+#if S3L_NEAR_CROSS_STRATEGY == 3
+ S3L_Vec4 *beI = &(_S3L_triangleRemapBarycentrics[in]),
+ *beB = &(_S3L_triangleRemapBarycentrics[be]);
+#else
+ S3L_Vec4 *beI = 0, *beB = 0;
+#endif
+
+ interpolateVertex
+
+ _S3L_projectedTriangleState = 1;
+ }
+ }
+ else if (infront == 1)
+ {
+ // create another triangle and do the shifts
+ transformed[3] = transformed[behindI[1]];
+ transformed[4] = transformed[infrontI[0]];
+ transformed[5] = transformed[infrontI[0]];
+
+#if S3L_NEAR_CROSS_STRATEGY == 3
+ _S3L_triangleRemapBarycentrics[3] =
+ _S3L_triangleRemapBarycentrics[behindI[1]];
+ _S3L_triangleRemapBarycentrics[4] =
+ _S3L_triangleRemapBarycentrics[infrontI[0]];
+ _S3L_triangleRemapBarycentrics[5] =
+ _S3L_triangleRemapBarycentrics[infrontI[0]];
+#endif
+
+ for (uint8_t i = 0; i < 2; ++i)
+ {
+ uint8_t be = behindI[i], in = i + 4;
+
+#if S3L_NEAR_CROSS_STRATEGY == 3
+ S3L_Vec4 *beI = &(_S3L_triangleRemapBarycentrics[in]),
+ *beB = &(_S3L_triangleRemapBarycentrics[be]);
+#else
+ S3L_Vec4 *beI = 0, *beB = 0;
+#endif
+
+ interpolateVertex
+ }
+
+#if S3L_NEAR_CROSS_STRATEGY == 3
+ _S3L_triangleRemapBarycentrics[infrontI[0]] =
+ _S3L_triangleRemapBarycentrics[4];
+#endif
+
+ transformed[infrontI[0]] = transformed[4];
+
+ _S3L_mapProjectedVertexToScreen(&transformed[3],focalLength);
+ _S3L_mapProjectedVertexToScreen(&transformed[4],focalLength);
+ _S3L_mapProjectedVertexToScreen(&transformed[5],focalLength);
+
+ _S3L_projectedTriangleState = 2;
+ }
+
+#undef interpolateVertex
+#endif // S3L_NEAR_CROSS_STRATEGY == 2
+
+ _S3L_mapProjectedVertexToScreen(&transformed[0],focalLength);
+ _S3L_mapProjectedVertexToScreen(&transformed[1],focalLength);
+ _S3L_mapProjectedVertexToScreen(&transformed[2],focalLength);
+}
+
+void S3L_drawScene(S3L_Scene scene)
+{
+ S3L_Mat4 matFinal, matCamera;
+ S3L_Vec4 transformed[6]; // transformed triangle coords, for 2 triangles
+
+ const S3L_Model3D *model;
+ S3L_Index modelIndex, triangleIndex;
+
+ S3L_makeCameraMatrix(scene.camera.transform,matCamera);
+
+#if S3L_SORT != 0
+ uint16_t previousModel = 0;
+ S3L_sortArrayLength = 0;
+#endif
+
+ for (modelIndex = 0; modelIndex < scene.modelCount; ++modelIndex)
+ {
+ if (!scene.models[modelIndex].config.visible)
+ continue;
+
+#if S3L_SORT != 0
+ if (S3L_sortArrayLength >= S3L_MAX_TRIANGES_DRAWN)
+ break;
+
+ previousModel = modelIndex;
+#endif
+
+ if (scene.models[modelIndex].customTransformMatrix == 0)
+ S3L_makeWorldMatrix(scene.models[modelIndex].transform,matFinal);
+ else
+ {
+ S3L_Mat4 *m = scene.models[modelIndex].customTransformMatrix;
+
+ for (int8_t j = 0; j < 4; ++j)
+ for (int8_t i = 0; i < 4; ++i)
+ matFinal[i][j] = (*m)[i][j];
+ }
+
+ S3L_mat4Xmat4(matFinal,matCamera);
+
+ S3L_Index triangleCount = scene.models[modelIndex].triangleCount;
+
+ triangleIndex = 0;
+
+ model = &(scene.models[modelIndex]);
+
+ while (triangleIndex < triangleCount)
+ {
+ /* Some kind of cache could be used in theory to not project perviously
+ already projected vertices, but after some testing this was abandoned,
+ no gain was seen. */
+
+ _S3L_projectTriangle(model,triangleIndex,matFinal,
+ scene.camera.focalLength,transformed);
+
+ if (S3L_triangleIsVisible(transformed[0],transformed[1],transformed[2],
+ model->config.backfaceCulling))
+ {
+#if S3L_SORT == 0
+ // without sorting draw right away
+ S3L_drawTriangle(transformed[0],transformed[1],transformed[2],modelIndex,
+ triangleIndex);
+
+ if (_S3L_projectedTriangleState == 2) // draw potential subtriangle
+ {
+#if S3L_NEAR_CROSS_STRATEGY == 3
+ _S3L_triangleRemapBarycentrics[0] = _S3L_triangleRemapBarycentrics[3];
+ _S3L_triangleRemapBarycentrics[1] = _S3L_triangleRemapBarycentrics[4];
+ _S3L_triangleRemapBarycentrics[2] = _S3L_triangleRemapBarycentrics[5];
+#endif
+
+ S3L_drawTriangle(transformed[3],transformed[4],transformed[5],
+ modelIndex, triangleIndex);
+ }
+#else
+
+ if (S3L_sortArrayLength >= S3L_MAX_TRIANGES_DRAWN)
+ break;
+
+ // with sorting add to a sort list
+ S3L_sortArray[S3L_sortArrayLength].modelIndex = modelIndex;
+ S3L_sortArray[S3L_sortArrayLength].triangleIndex = triangleIndex;
+ S3L_sortArray[S3L_sortArrayLength].sortValue = S3L_zeroClamp(
+ transformed[0].w + transformed[1].w + transformed[2].w) >> 2;
+ /* ^
+ The w component here stores non-clamped z.
+
+ As a simple approximation we sort by the triangle center point,
+ which is a mean coordinate -- we don't actually have to divide by 3
+ (or anything), that is unnecessary for sorting! We shift by 2 just
+ as a fast operation to prevent overflow of the sum over uint_16t. */
+
+ S3L_sortArrayLength++;
+#endif
+ }
+
+ triangleIndex++;
+ }
+ }
+
+#if S3L_SORT != 0
+
+ #if S3L_SORT == 1
+ #define cmp <
+ #else
+ #define cmp >
+ #endif
+
+ /* Sort the triangles. We use insertion sort, because it has many advantages,
+ especially for smaller arrays (better than bubble sort, in-place, stable,
+ simple, ...). */
+
+ for (int16_t i = 1; i < S3L_sortArrayLength; ++i)
+ {
+ _S3L_TriangleToSort tmp = S3L_sortArray[i];
+
+ int16_t j = i - 1;
+
+ while (j >= 0 && S3L_sortArray[j].sortValue cmp tmp.sortValue)
+ {
+ S3L_sortArray[j + 1] = S3L_sortArray[j];
+ j--;
+ }
+
+ S3L_sortArray[j + 1] = tmp;
+ }
+
+ #undef cmp
+
+ for (S3L_Index i = 0; i < S3L_sortArrayLength; ++i) // draw sorted triangles
+ {
+ modelIndex = S3L_sortArray[i].modelIndex;
+ triangleIndex = S3L_sortArray[i].triangleIndex;
+
+ model = &(scene.models[modelIndex]);
+
+ if (modelIndex != previousModel)
+ {
+ // only recompute the matrix when the model has changed
+ S3L_makeWorldMatrix(model->transform,matFinal);
+ S3L_mat4Xmat4(matFinal,matCamera);
+ previousModel = modelIndex;
+ }
+
+ /* Here we project the points again, which is redundant and slow as they've
+ already been projected above, but saving the projected points would
+ require a lot of memory, which for small resolutions could be even
+ worse than z-bufer. So this seems to be the best way memory-wise. */
+
+ _S3L_projectTriangle(model,triangleIndex,matFinal,scene.camera.focalLength,
+ transformed);
+
+ S3L_drawTriangle(transformed[0],transformed[1],transformed[2],modelIndex,
+ triangleIndex);
+
+ if (_S3L_projectedTriangleState == 2)
+ {
+#if S3L_NEAR_CROSS_STRATEGY == 3
+ _S3L_triangleRemapBarycentrics[0] = _S3L_triangleRemapBarycentrics[3];
+ _S3L_triangleRemapBarycentrics[1] = _S3L_triangleRemapBarycentrics[4];
+ _S3L_triangleRemapBarycentrics[2] = _S3L_triangleRemapBarycentrics[5];
+#endif
+
+ S3L_drawTriangle(transformed[3],transformed[4],transformed[5],
+ modelIndex, triangleIndex);
+ }
+
+ }
+#endif
+}
+
+#endif // guard