diff options
Diffstat (limited to 'raylib/src/rmodels.c')
-rw-r--r-- | raylib/src/rmodels.c | 5112 |
1 files changed, 5112 insertions, 0 deletions
diff --git a/raylib/src/rmodels.c b/raylib/src/rmodels.c new file mode 100644 index 0000000..f60d1f6 --- /dev/null +++ b/raylib/src/rmodels.c @@ -0,0 +1,5112 @@ +/********************************************************************************************** +* +* rmodels - Basic functions to draw 3d shapes and load and draw 3d models +* +* CONFIGURATION: +* +* #define SUPPORT_MODULE_RMODELS +* rmodels module is included in the build +* +* #define SUPPORT_FILEFORMAT_OBJ +* #define SUPPORT_FILEFORMAT_MTL +* #define SUPPORT_FILEFORMAT_IQM +* #define SUPPORT_FILEFORMAT_GLTF +* #define SUPPORT_FILEFORMAT_VOX +* Selected desired fileformats to be supported for model data loading. +* +* #define SUPPORT_MESH_GENERATION +* Support procedural mesh generation functions, uses external par_shapes.h library +* NOTE: Some generated meshes DO NOT include generated texture coordinates +* +* +* LICENSE: zlib/libpng +* +* Copyright (c) 2013-2022 Ramon Santamaria (@raysan5) +* +* This software is provided "as-is", without any express or implied warranty. In no event +* will the authors be held liable for any damages arising from the use of this software. +* +* Permission is granted to anyone to use this software for any purpose, including commercial +* applications, and to alter it and redistribute it freely, subject to the following restrictions: +* +* 1. The origin of this software must not be misrepresented; you must not claim that you +* wrote the original software. If you use this software in a product, an acknowledgment +* in the product documentation would be appreciated but is not required. +* +* 2. Altered source versions must be plainly marked as such, and must not be misrepresented +* as being the original software. +* +* 3. This notice may not be removed or altered from any source distribution. +* +**********************************************************************************************/ + +#include "raylib.h" // Declares module functions + +// Check if config flags have been externally provided on compilation line +#if !defined(EXTERNAL_CONFIG_FLAGS) + #include "config.h" // Defines module configuration flags +#endif + +#if defined(SUPPORT_MODULE_RMODELS) + +#include "utils.h" // Required for: TRACELOG(), LoadFileData(), LoadFileText(), SaveFileText() +#include "rlgl.h" // OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2 +#include "raymath.h" // Required for: Vector3, Quaternion and Matrix functionality + +#include <stdio.h> // Required for: sprintf() +#include <stdlib.h> // Required for: malloc(), free() +#include <string.h> // Required for: memcmp(), strlen() +#include <math.h> // Required for: sinf(), cosf(), sqrtf(), fabsf() + +#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL) + #define TINYOBJ_MALLOC RL_MALLOC + #define TINYOBJ_CALLOC RL_CALLOC + #define TINYOBJ_REALLOC RL_REALLOC + #define TINYOBJ_FREE RL_FREE + + #define TINYOBJ_LOADER_C_IMPLEMENTATION + #include "external/tinyobj_loader_c.h" // OBJ/MTL file formats loading +#endif + +#if defined(SUPPORT_FILEFORMAT_GLTF) + #define CGLTF_MALLOC RL_MALLOC + #define CGLTF_FREE RL_FREE + + #define CGLTF_IMPLEMENTATION + #include "external/cgltf.h" // glTF file format loading +#endif + +#if defined(SUPPORT_FILEFORMAT_VOX) + #define VOX_MALLOC RL_MALLOC + #define VOX_CALLOC RL_CALLOC + #define VOX_REALLOC RL_REALLOC + #define VOX_FREE RL_FREE + + #define VOX_LOADER_IMPLEMENTATION + #include "external/vox_loader.h" // VOX file format loading (MagikaVoxel) +#endif + +#if defined(SUPPORT_MESH_GENERATION) + #define PAR_MALLOC(T, N) ((T*)RL_MALLOC(N*sizeof(T))) + #define PAR_CALLOC(T, N) ((T*)RL_CALLOC(N*sizeof(T), 1)) + #define PAR_REALLOC(T, BUF, N) ((T*)RL_REALLOC(BUF, sizeof(T)*(N))) + #define PAR_FREE RL_FREE + + #define PAR_SHAPES_IMPLEMENTATION + #include "external/par_shapes.h" // Shapes 3d parametric generation +#endif + +#if defined(_WIN32) + #include <direct.h> // Required for: _chdir() [Used in LoadOBJ()] + #define CHDIR _chdir +#else + #include <unistd.h> // Required for: chdir() (POSIX) [Used in LoadOBJ()] + #define CHDIR chdir +#endif + +//---------------------------------------------------------------------------------- +// Defines and Macros +//---------------------------------------------------------------------------------- +#ifndef MAX_MATERIAL_MAPS + #define MAX_MATERIAL_MAPS 12 // Maximum number of maps supported +#endif +#ifndef MAX_MESH_VERTEX_BUFFERS + #define MAX_MESH_VERTEX_BUFFERS 7 // Maximum vertex buffers (VBO) per mesh +#endif + +//---------------------------------------------------------------------------------- +// Types and Structures Definition +//---------------------------------------------------------------------------------- +// ... + +//---------------------------------------------------------------------------------- +// Global Variables Definition +//---------------------------------------------------------------------------------- +// ... + +//---------------------------------------------------------------------------------- +// Module specific Functions Declaration +//---------------------------------------------------------------------------------- +#if defined(SUPPORT_FILEFORMAT_OBJ) +static Model LoadOBJ(const char *fileName); // Load OBJ mesh data +#endif +#if defined(SUPPORT_FILEFORMAT_IQM) +static Model LoadIQM(const char *fileName); // Load IQM mesh data +static ModelAnimation *LoadModelAnimationsIQM(const char *fileName, unsigned int *animCount); // Load IQM animation data +#endif +#if defined(SUPPORT_FILEFORMAT_GLTF) +static Model LoadGLTF(const char *fileName); // Load GLTF mesh data +//static ModelAnimation *LoadModelAnimationGLTF(const char *fileName, unsigned int *animCount); // Load GLTF animation data +#endif +#if defined(SUPPORT_FILEFORMAT_VOX) +static Model LoadVOX(const char *filename); // Load VOX mesh data +#endif + +//---------------------------------------------------------------------------------- +// Module Functions Definition +//---------------------------------------------------------------------------------- + +// Draw a line in 3D world space +void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color) +{ + // WARNING: Be careful with internal buffer vertex alignment + // when using RL_LINES or RL_TRIANGLES, data is aligned to fit + // lines-triangles-quads in the same indexed buffers!!! + rlCheckRenderBatchLimit(8); + + rlBegin(RL_LINES); + rlColor4ub(color.r, color.g, color.b, color.a); + rlVertex3f(startPos.x, startPos.y, startPos.z); + rlVertex3f(endPos.x, endPos.y, endPos.z); + rlEnd(); +} + +// Draw a point in 3D space, actually a small line +void DrawPoint3D(Vector3 position, Color color) +{ + rlCheckRenderBatchLimit(8); + + rlPushMatrix(); + rlTranslatef(position.x, position.y, position.z); + rlBegin(RL_LINES); + rlColor4ub(color.r, color.g, color.b, color.a); + rlVertex3f(0.0f, 0.0f, 0.0f); + rlVertex3f(0.0f, 0.0f, 0.1f); + rlEnd(); + rlPopMatrix(); +} + +// Draw a circle in 3D world space +void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color) +{ + rlCheckRenderBatchLimit(2*36); + + rlPushMatrix(); + rlTranslatef(center.x, center.y, center.z); + rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z); + + rlBegin(RL_LINES); + for (int i = 0; i < 360; i += 10) + { + rlColor4ub(color.r, color.g, color.b, color.a); + + rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f); + rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f); + } + rlEnd(); + rlPopMatrix(); +} + +// Draw a color-filled triangle (vertex in counter-clockwise order!) +void DrawTriangle3D(Vector3 v1, Vector3 v2, Vector3 v3, Color color) +{ + rlCheckRenderBatchLimit(3); + + rlBegin(RL_TRIANGLES); + rlColor4ub(color.r, color.g, color.b, color.a); + rlVertex3f(v1.x, v1.y, v1.z); + rlVertex3f(v2.x, v2.y, v2.z); + rlVertex3f(v3.x, v3.y, v3.z); + rlEnd(); +} + +// Draw a triangle strip defined by points +void DrawTriangleStrip3D(Vector3 *points, int pointCount, Color color) +{ + if (pointCount >= 3) + { + rlCheckRenderBatchLimit(3*(pointCount - 2)); + + rlBegin(RL_TRIANGLES); + rlColor4ub(color.r, color.g, color.b, color.a); + + for (int i = 2; i < pointCount; i++) + { + if ((i%2) == 0) + { + rlVertex3f(points[i].x, points[i].y, points[i].z); + rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z); + rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z); + } + else + { + rlVertex3f(points[i].x, points[i].y, points[i].z); + rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z); + rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z); + } + } + rlEnd(); + } +} + +// Draw cube +// NOTE: Cube position is the center position +void DrawCube(Vector3 position, float width, float height, float length, Color color) +{ + float x = 0.0f; + float y = 0.0f; + float z = 0.0f; + + rlCheckRenderBatchLimit(36); + + rlPushMatrix(); + // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate) + rlTranslatef(position.x, position.y, position.z); + //rlRotatef(45, 0, 1, 0); + //rlScalef(1.0f, 1.0f, 1.0f); // NOTE: Vertices are directly scaled on definition + + rlBegin(RL_TRIANGLES); + rlColor4ub(color.r, color.g, color.b, color.a); + + // Front face + rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left + rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right + rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left + + rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right + rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left + rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right + + // Back face + rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left + rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left + rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right + + rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right + rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right + rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left + + // Top face + rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left + rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left + rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right + + rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right + rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left + rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right + + // Bottom face + rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left + rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right + rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left + + rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Right + rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right + rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left + + // Right face + rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right + rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right + rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left + + rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left + rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right + rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left + + // Left face + rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right + rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left + rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right + + rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left + rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left + rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right + rlEnd(); + rlPopMatrix(); +} + +// Draw cube (Vector version) +void DrawCubeV(Vector3 position, Vector3 size, Color color) +{ + DrawCube(position, size.x, size.y, size.z, color); +} + +// Draw cube wires +void DrawCubeWires(Vector3 position, float width, float height, float length, Color color) +{ + float x = 0.0f; + float y = 0.0f; + float z = 0.0f; + + rlCheckRenderBatchLimit(36); + + rlPushMatrix(); + rlTranslatef(position.x, position.y, position.z); + + rlBegin(RL_LINES); + rlColor4ub(color.r, color.g, color.b, color.a); + + // Front face ----------------------------------------------------- + // Bottom line + rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom left + rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom right + + // Left line + rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom right + rlVertex3f(x+width/2, y+height/2, z+length/2); // Top right + + // Top line + rlVertex3f(x+width/2, y+height/2, z+length/2); // Top right + rlVertex3f(x-width/2, y+height/2, z+length/2); // Top left + + // Right line + rlVertex3f(x-width/2, y+height/2, z+length/2); // Top left + rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom left + + // Back face ------------------------------------------------------ + // Bottom line + rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom left + rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom right + + // Left line + rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom right + rlVertex3f(x+width/2, y+height/2, z-length/2); // Top right + + // Top line + rlVertex3f(x+width/2, y+height/2, z-length/2); // Top right + rlVertex3f(x-width/2, y+height/2, z-length/2); // Top left + + // Right line + rlVertex3f(x-width/2, y+height/2, z-length/2); // Top left + rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom left + + // Top face ------------------------------------------------------- + // Left line + rlVertex3f(x-width/2, y+height/2, z+length/2); // Top left front + rlVertex3f(x-width/2, y+height/2, z-length/2); // Top left back + + // Right line + rlVertex3f(x+width/2, y+height/2, z+length/2); // Top right front + rlVertex3f(x+width/2, y+height/2, z-length/2); // Top right back + + // Bottom face --------------------------------------------------- + // Left line + rlVertex3f(x-width/2, y-height/2, z+length/2); // Top left front + rlVertex3f(x-width/2, y-height/2, z-length/2); // Top left back + + // Right line + rlVertex3f(x+width/2, y-height/2, z+length/2); // Top right front + rlVertex3f(x+width/2, y-height/2, z-length/2); // Top right back + rlEnd(); + rlPopMatrix(); +} + +// Draw cube wires (vector version) +void DrawCubeWiresV(Vector3 position, Vector3 size, Color color) +{ + DrawCubeWires(position, size.x, size.y, size.z, color); +} + +// Draw cube +// NOTE: Cube position is the center position +void DrawCubeTexture(Texture2D texture, Vector3 position, float width, float height, float length, Color color) +{ + float x = position.x; + float y = position.y; + float z = position.z; + + rlCheckRenderBatchLimit(36); + + rlSetTexture(texture.id); + + //rlPushMatrix(); + // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate) + //rlTranslatef(2.0f, 0.0f, 0.0f); + //rlRotatef(45, 0, 1, 0); + //rlScalef(2.0f, 2.0f, 2.0f); + + rlBegin(RL_QUADS); + rlColor4ub(color.r, color.g, color.b, color.a); + // Front Face + rlNormal3f(0.0f, 0.0f, 1.0f); // Normal Pointing Towards Viewer + rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad + rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad + rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right Of The Texture and Quad + rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left Of The Texture and Quad + // Back Face + rlNormal3f(0.0f, 0.0f, - 1.0f); // Normal Pointing Away From Viewer + rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right Of The Texture and Quad + rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad + rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad + rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Left Of The Texture and Quad + // Top Face + rlNormal3f(0.0f, 1.0f, 0.0f); // Normal Pointing Up + rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad + rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left Of The Texture and Quad + rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right Of The Texture and Quad + rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad + // Bottom Face + rlNormal3f(0.0f, - 1.0f, 0.0f); // Normal Pointing Down + rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Right Of The Texture and Quad + rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Left Of The Texture and Quad + rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad + rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad + // Right face + rlNormal3f(1.0f, 0.0f, 0.0f); // Normal Pointing Right + rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right Of The Texture and Quad + rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad + rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left Of The Texture and Quad + rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad + // Left Face + rlNormal3f( - 1.0f, 0.0f, 0.0f); // Normal Pointing Left + rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left Of The Texture and Quad + rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad + rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Right Of The Texture and Quad + rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad + rlEnd(); + //rlPopMatrix(); + + rlSetTexture(0); +} + +// Draw cube with texture piece applied to all faces +void DrawCubeTextureRec(Texture2D texture, Rectangle source, Vector3 position, float width, float height, float length, Color color) +{ + float x = position.x; + float y = position.y; + float z = position.z; + float texWidth = (float)texture.width; + float texHeight = (float)texture.height; + + rlCheckRenderBatchLimit(36); + + rlSetTexture(texture.id); + + rlBegin(RL_QUADS); + rlColor4ub(color.r, color.g, color.b, color.a); + + // Front face + rlNormal3f(0.0f, 0.0f, 1.0f); + rlTexCoord2f(source.x/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x - width/2, y - height/2, z + length/2); + rlTexCoord2f((source.x + source.width)/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x + width/2, y - height/2, z + length/2); + rlTexCoord2f((source.x + source.width)/texWidth, source.y/texHeight); + rlVertex3f(x + width/2, y + height/2, z + length/2); + rlTexCoord2f(source.x/texWidth, source.y/texHeight); + rlVertex3f(x - width/2, y + height/2, z + length/2); + + // Back face + rlNormal3f(0.0f, 0.0f, - 1.0f); + rlTexCoord2f((source.x + source.width)/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x - width/2, y - height/2, z - length/2); + rlTexCoord2f((source.x + source.width)/texWidth, source.y/texHeight); + rlVertex3f(x - width/2, y + height/2, z - length/2); + rlTexCoord2f(source.x/texWidth, source.y/texHeight); + rlVertex3f(x + width/2, y + height/2, z - length/2); + rlTexCoord2f(source.x/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x + width/2, y - height/2, z - length/2); + + // Top face + rlNormal3f(0.0f, 1.0f, 0.0f); + rlTexCoord2f(source.x/texWidth, source.y/texHeight); + rlVertex3f(x - width/2, y + height/2, z - length/2); + rlTexCoord2f(source.x/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x - width/2, y + height/2, z + length/2); + rlTexCoord2f((source.x + source.width)/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x + width/2, y + height/2, z + length/2); + rlTexCoord2f((source.x + source.width)/texWidth, source.y/texHeight); + rlVertex3f(x + width/2, y + height/2, z - length/2); + + // Bottom face + rlNormal3f(0.0f, - 1.0f, 0.0f); + rlTexCoord2f((source.x + source.width)/texWidth, source.y/texHeight); + rlVertex3f(x - width/2, y - height/2, z - length/2); + rlTexCoord2f(source.x/texWidth, source.y/texHeight); + rlVertex3f(x + width/2, y - height/2, z - length/2); + rlTexCoord2f(source.x/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x + width/2, y - height/2, z + length/2); + rlTexCoord2f((source.x + source.width)/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x - width/2, y - height/2, z + length/2); + + // Right face + rlNormal3f(1.0f, 0.0f, 0.0f); + rlTexCoord2f((source.x + source.width)/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x + width/2, y - height/2, z - length/2); + rlTexCoord2f((source.x + source.width)/texWidth, source.y/texHeight); + rlVertex3f(x + width/2, y + height/2, z - length/2); + rlTexCoord2f(source.x/texWidth, source.y/texHeight); + rlVertex3f(x + width/2, y + height/2, z + length/2); + rlTexCoord2f(source.x/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x + width/2, y - height/2, z + length/2); + + // Left face + rlNormal3f( - 1.0f, 0.0f, 0.0f); + rlTexCoord2f(source.x/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x - width/2, y - height/2, z - length/2); + rlTexCoord2f((source.x + source.width)/texWidth, (source.y + source.height)/texHeight); + rlVertex3f(x - width/2, y - height/2, z + length/2); + rlTexCoord2f((source.x + source.width)/texWidth, source.y/texHeight); + rlVertex3f(x - width/2, y + height/2, z + length/2); + rlTexCoord2f(source.x/texWidth, source.y/texHeight); + rlVertex3f(x - width/2, y + height/2, z - length/2); + + rlEnd(); + + rlSetTexture(0); +} + +// Draw sphere +void DrawSphere(Vector3 centerPos, float radius, Color color) +{ + DrawSphereEx(centerPos, radius, 16, 16, color); +} + +// Draw sphere with extended parameters +void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color) +{ + int numVertex = (rings + 2)*slices*6; + rlCheckRenderBatchLimit(numVertex); + + rlPushMatrix(); + // NOTE: Transformation is applied in inverse order (scale -> translate) + rlTranslatef(centerPos.x, centerPos.y, centerPos.z); + rlScalef(radius, radius, radius); + + rlBegin(RL_TRIANGLES); + rlColor4ub(color.r, color.g, color.b, color.a); + + for (int i = 0; i < (rings + 2); i++) + { + for (int j = 0; j < slices; j++) + { + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices))); + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices))); + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices))); + + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices))); + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i))), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices))); + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices))); + } + } + rlEnd(); + rlPopMatrix(); +} + +// Draw sphere wires +void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color) +{ + int numVertex = (rings + 2)*slices*6; + rlCheckRenderBatchLimit(numVertex); + + rlPushMatrix(); + // NOTE: Transformation is applied in inverse order (scale -> translate) + rlTranslatef(centerPos.x, centerPos.y, centerPos.z); + rlScalef(radius, radius, radius); + + rlBegin(RL_LINES); + rlColor4ub(color.r, color.g, color.b, color.a); + + for (int i = 0; i < (rings + 2); i++) + { + for (int j = 0; j < slices; j++) + { + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices))); + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices))); + + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices))); + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices))); + + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices))); + rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)), + sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)), + cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices))); + } + } + rlEnd(); + rlPopMatrix(); +} + +// Draw a cylinder +// NOTE: It could be also used for pyramid and cone +void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color) +{ + if (sides < 3) sides = 3; + + int numVertex = sides*6; + rlCheckRenderBatchLimit(numVertex); + + rlPushMatrix(); + rlTranslatef(position.x, position.y, position.z); + + rlBegin(RL_TRIANGLES); + rlColor4ub(color.r, color.g, color.b, color.a); + + if (radiusTop > 0) + { + // Draw Body ------------------------------------------------------------------------------------- + for (int i = 0; i < 360; i += 360/sides) + { + rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left + rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360.0f/sides))*radiusBottom); //Bottom Right + rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360.0f/sides))*radiusTop); //Top Right + + rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); //Top Left + rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left + rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360.0f/sides))*radiusTop); //Top Right + } + + // Draw Cap -------------------------------------------------------------------------------------- + for (int i = 0; i < 360; i += 360/sides) + { + rlVertex3f(0, height, 0); + rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); + rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360.0f/sides))*radiusTop); + } + } + else + { + // Draw Cone ------------------------------------------------------------------------------------- + for (int i = 0; i < 360; i += 360/sides) + { + rlVertex3f(0, height, 0); + rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); + rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360.0f/sides))*radiusBottom); + } + } + + // Draw Base ----------------------------------------------------------------------------------------- + for (int i = 0; i < 360; i += 360/sides) + { + rlVertex3f(0, 0, 0); + rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360.0f/sides))*radiusBottom); + rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); + } + rlEnd(); + rlPopMatrix(); +} + +// Draw a cylinder with base at startPos and top at endPos +// NOTE: It could be also used for pyramid and cone +void DrawCylinderEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color) +{ + if (sides < 3) sides = 3; + + int numVertex = sides*6; + rlCheckRenderBatchLimit(numVertex); + + Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z }; + if ((direction.x == 0) && (direction.y == 0) && (direction.z == 0)) return; + + // Construct a basis of the base and the top face: + Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction)); + Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction)); + + float baseAngle = (2.0f*PI)/sides; + + rlBegin(RL_TRIANGLES); + rlColor4ub(color.r, color.g, color.b, color.a); + + for (int i = 0; i < sides; i++) { + // compute the four vertices + float s1 = sinf(baseAngle*(i + 0))*startRadius; + float c1 = cosf(baseAngle*(i + 0))*startRadius; + Vector3 w1 = { startPos.x + s1*b1.x + c1*b2.x, startPos.y + s1*b1.y + c1*b2.y, startPos.z + s1*b1.z + c1*b2.z }; + float s2 = sinf(baseAngle*(i + 1))*startRadius; + float c2 = cosf(baseAngle*(i + 1))*startRadius; + Vector3 w2 = { startPos.x + s2*b1.x + c2*b2.x, startPos.y + s2*b1.y + c2*b2.y, startPos.z + s2*b1.z + c2*b2.z }; + float s3 = sinf(baseAngle*(i + 0))*endRadius; + float c3 = cosf(baseAngle*(i + 0))*endRadius; + Vector3 w3 = { endPos.x + s3*b1.x + c3*b2.x, endPos.y + s3*b1.y + c3*b2.y, endPos.z + s3*b1.z + c3*b2.z }; + float s4 = sinf(baseAngle*(i + 1))*endRadius; + float c4 = cosf(baseAngle*(i + 1))*endRadius; + Vector3 w4 = { endPos.x + s4*b1.x + c4*b2.x, endPos.y + s4*b1.y + c4*b2.y, endPos.z + s4*b1.z + c4*b2.z }; + + if (startRadius > 0) { // + rlVertex3f(startPos.x, startPos.y, startPos.z); // | + rlVertex3f(w2.x, w2.y, w2.z); // T0 + rlVertex3f(w1.x, w1.y, w1.z); // | + } // + // w2 x.-----------x startPos + rlVertex3f(w1.x, w1.y, w1.z); // | |\'. T0 / + rlVertex3f(w2.x, w2.y, w2.z); // T1 | \ '. / + rlVertex3f(w3.x, w3.y, w3.z); // | |T \ '. / + // | 2 \ T 'x w1 + rlVertex3f(w2.x, w2.y, w2.z); // | w4 x.---\-1-|---x endPos + rlVertex3f(w4.x, w4.y, w4.z); // T2 '. \ |T3/ + rlVertex3f(w3.x, w3.y, w3.z); // | '. \ | / + // '.\|/ + if (endRadius > 0) { // 'x w3 + rlVertex3f(endPos.x, endPos.y, endPos.z); // | + rlVertex3f(w3.x, w3.y, w3.z); // T3 + rlVertex3f(w4.x, w4.y, w4.z); // | + } // + } + rlEnd(); +} + +// Draw a wired cylinder +// NOTE: It could be also used for pyramid and cone +void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color) +{ + if (sides < 3) sides = 3; + + int numVertex = sides*8; + rlCheckRenderBatchLimit(numVertex); + + rlPushMatrix(); + rlTranslatef(position.x, position.y, position.z); + + rlBegin(RL_LINES); + rlColor4ub(color.r, color.g, color.b, color.a); + + for (int i = 0; i < 360; i += 360/sides) + { + rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); + rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360.0f/sides))*radiusBottom); + + rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360.0f/sides))*radiusBottom); + rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360.0f/sides))*radiusTop); + + rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360.0f/sides))*radiusTop); + rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); + + rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); + rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); + } + rlEnd(); + rlPopMatrix(); +} + + +// Draw a wired cylinder with base at startPos and top at endPos +// NOTE: It could be also used for pyramid and cone +void DrawCylinderWiresEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color) +{ + if (sides < 3) sides = 3; + + int numVertex = sides*6; + rlCheckRenderBatchLimit(numVertex); + + Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z }; + if ((direction.x == 0) && (direction.y == 0) && (direction.z == 0))return; + + // Construct a basis of the base and the top face: + Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction)); + Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction)); + + float baseAngle = (2.0f*PI)/sides; + + rlBegin(RL_LINES); + rlColor4ub(color.r, color.g, color.b, color.a); + + for (int i = 0; i < sides; i++) { + // compute the four vertices + float s1 = sinf(baseAngle*(i + 0))*startRadius; + float c1 = cosf(baseAngle*(i + 0))*startRadius; + Vector3 w1 = { startPos.x + s1*b1.x + c1*b2.x, startPos.y + s1*b1.y + c1*b2.y, startPos.z + s1*b1.z + c1*b2.z }; + float s2 = sinf(baseAngle*(i + 1))*startRadius; + float c2 = cosf(baseAngle*(i + 1))*startRadius; + Vector3 w2 = { startPos.x + s2*b1.x + c2*b2.x, startPos.y + s2*b1.y + c2*b2.y, startPos.z + s2*b1.z + c2*b2.z }; + float s3 = sinf(baseAngle*(i + 0))*endRadius; + float c3 = cosf(baseAngle*(i + 0))*endRadius; + Vector3 w3 = { endPos.x + s3*b1.x + c3*b2.x, endPos.y + s3*b1.y + c3*b2.y, endPos.z + s3*b1.z + c3*b2.z }; + float s4 = sinf(baseAngle*(i + 1))*endRadius; + float c4 = cosf(baseAngle*(i + 1))*endRadius; + Vector3 w4 = { endPos.x + s4*b1.x + c4*b2.x, endPos.y + s4*b1.y + c4*b2.y, endPos.z + s4*b1.z + c4*b2.z }; + + rlVertex3f(w1.x, w1.y, w1.z); + rlVertex3f(w2.x, w2.y, w2.z); + + rlVertex3f(w1.x, w1.y, w1.z); + rlVertex3f(w3.x, w3.y, w3.z); + + rlVertex3f(w3.x, w3.y, w3.z); + rlVertex3f(w4.x, w4.y, w4.z); + } + rlEnd(); +} + + +// Draw a plane +void DrawPlane(Vector3 centerPos, Vector2 size, Color color) +{ + rlCheckRenderBatchLimit(4); + + // NOTE: Plane is always created on XZ ground + rlPushMatrix(); + rlTranslatef(centerPos.x, centerPos.y, centerPos.z); + rlScalef(size.x, 1.0f, size.y); + + rlBegin(RL_QUADS); + rlColor4ub(color.r, color.g, color.b, color.a); + rlNormal3f(0.0f, 1.0f, 0.0f); + + rlVertex3f(-0.5f, 0.0f, -0.5f); + rlVertex3f(-0.5f, 0.0f, 0.5f); + rlVertex3f(0.5f, 0.0f, 0.5f); + rlVertex3f(0.5f, 0.0f, -0.5f); + rlEnd(); + rlPopMatrix(); +} + +// Draw a ray line +void DrawRay(Ray ray, Color color) +{ + float scale = 10000; + + rlBegin(RL_LINES); + rlColor4ub(color.r, color.g, color.b, color.a); + rlColor4ub(color.r, color.g, color.b, color.a); + + rlVertex3f(ray.position.x, ray.position.y, ray.position.z); + rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale); + rlEnd(); +} + +// Draw a grid centered at (0, 0, 0) +void DrawGrid(int slices, float spacing) +{ + int halfSlices = slices/2; + + rlCheckRenderBatchLimit((slices + 2)*4); + + rlBegin(RL_LINES); + for (int i = -halfSlices; i <= halfSlices; i++) + { + if (i == 0) + { + rlColor3f(0.5f, 0.5f, 0.5f); + rlColor3f(0.5f, 0.5f, 0.5f); + rlColor3f(0.5f, 0.5f, 0.5f); + rlColor3f(0.5f, 0.5f, 0.5f); + } + else + { + rlColor3f(0.75f, 0.75f, 0.75f); + rlColor3f(0.75f, 0.75f, 0.75f); + rlColor3f(0.75f, 0.75f, 0.75f); + rlColor3f(0.75f, 0.75f, 0.75f); + } + + rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing); + rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing); + + rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing); + rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing); + } + rlEnd(); +} + +// Load model from files (mesh and material) +Model LoadModel(const char *fileName) +{ + Model model = { 0 }; + +#if defined(SUPPORT_FILEFORMAT_OBJ) + if (IsFileExtension(fileName, ".obj")) model = LoadOBJ(fileName); +#endif +#if defined(SUPPORT_FILEFORMAT_IQM) + if (IsFileExtension(fileName, ".iqm")) model = LoadIQM(fileName); +#endif +#if defined(SUPPORT_FILEFORMAT_GLTF) + if (IsFileExtension(fileName, ".gltf") || IsFileExtension(fileName, ".glb")) model = LoadGLTF(fileName); +#endif +#if defined(SUPPORT_FILEFORMAT_VOX) + if (IsFileExtension(fileName, ".vox")) model = LoadVOX(fileName); +#endif + + // Make sure model transform is set to identity matrix! + model.transform = MatrixIdentity(); + + if (model.meshCount == 0) + { + model.meshCount = 1; + model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh)); +#if defined(SUPPORT_MESH_GENERATION) + TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load mesh data, default to cube mesh", fileName); + model.meshes[0] = GenMeshCube(1.0f, 1.0f, 1.0f); +#else + TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load mesh data", fileName); +#endif + } + else + { + // Upload vertex data to GPU (static mesh) + for (int i = 0; i < model.meshCount; i++) UploadMesh(&model.meshes[i], false); + } + + if (model.materialCount == 0) + { + TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to load material data, default to white material", fileName); + + model.materialCount = 1; + model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); + model.materials[0] = LoadMaterialDefault(); + + if (model.meshMaterial == NULL) model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); + } + + return model; +} + +// Load model from generated mesh +// WARNING: A shallow copy of mesh is generated, passed by value, +// as long as struct contains pointers to data and some values, we get a copy +// of mesh pointing to same data as original version... be careful! +Model LoadModelFromMesh(Mesh mesh) +{ + Model model = { 0 }; + + model.transform = MatrixIdentity(); + + model.meshCount = 1; + model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh)); + model.meshes[0] = mesh; + + model.materialCount = 1; + model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); + model.materials[0] = LoadMaterialDefault(); + + model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); + model.meshMaterial[0] = 0; // First material index + + return model; +} + +// Unload model (meshes/materials) from memory (RAM and/or VRAM) +// NOTE: This function takes care of all model elements, for a detailed control +// over them, use UnloadMesh() and UnloadMaterial() +void UnloadModel(Model model) +{ + // Unload meshes + for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]); + + // Unload materials maps + // NOTE: As the user could be sharing shaders and textures between models, + // we don't unload the material but just free it's maps, + // the user is responsible for freeing models shaders and textures + for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps); + + // Unload arrays + RL_FREE(model.meshes); + RL_FREE(model.materials); + RL_FREE(model.meshMaterial); + + // Unload animation data + RL_FREE(model.bones); + RL_FREE(model.bindPose); + + TRACELOG(LOG_INFO, "MODEL: Unloaded model (and meshes) from RAM and VRAM"); +} + +// Unload model (but not meshes) from memory (RAM and/or VRAM) +void UnloadModelKeepMeshes(Model model) +{ + // Unload materials maps + // NOTE: As the user could be sharing shaders and textures between models, + // we don't unload the material but just free it's maps, + // the user is responsible for freeing models shaders and textures + for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps); + + // Unload arrays + RL_FREE(model.meshes); + RL_FREE(model.materials); + RL_FREE(model.meshMaterial); + + // Unload animation data + RL_FREE(model.bones); + RL_FREE(model.bindPose); + + TRACELOG(LOG_INFO, "MODEL: Unloaded model (but not meshes) from RAM and VRAM"); +} + +// Compute model bounding box limits (considers all meshes) +BoundingBox GetModelBoundingBox(Model model) +{ + BoundingBox bounds = { 0 }; + + if (model.meshCount > 0) + { + Vector3 temp = { 0 }; + bounds = GetMeshBoundingBox(model.meshes[0]); + + for (int i = 1; i < model.meshCount; i++) + { + BoundingBox tempBounds = GetMeshBoundingBox(model.meshes[i]); + + temp.x = (bounds.min.x < tempBounds.min.x)? bounds.min.x : tempBounds.min.x; + temp.y = (bounds.min.y < tempBounds.min.y)? bounds.min.y : tempBounds.min.y; + temp.z = (bounds.min.z < tempBounds.min.z)? bounds.min.z : tempBounds.min.z; + bounds.min = temp; + + temp.x = (bounds.max.x > tempBounds.max.x)? bounds.max.x : tempBounds.max.x; + temp.y = (bounds.max.y > tempBounds.max.y)? bounds.max.y : tempBounds.max.y; + temp.z = (bounds.max.z > tempBounds.max.z)? bounds.max.z : tempBounds.max.z; + bounds.max = temp; + } + } + + return bounds; +} + +// Upload vertex data into a VAO (if supported) and VBO +void UploadMesh(Mesh *mesh, bool dynamic) +{ + if (mesh->vaoId > 0) + { + // Check if mesh has already been loaded in GPU + TRACELOG(LOG_WARNING, "VAO: [ID %i] Trying to re-load an already loaded mesh", mesh->vaoId); + return; + } + + mesh->vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VERTEX_BUFFERS, sizeof(unsigned int)); + + mesh->vaoId = 0; // Vertex Array Object + mesh->vboId[0] = 0; // Vertex buffer: positions + mesh->vboId[1] = 0; // Vertex buffer: texcoords + mesh->vboId[2] = 0; // Vertex buffer: normals + mesh->vboId[3] = 0; // Vertex buffer: colors + mesh->vboId[4] = 0; // Vertex buffer: tangents + mesh->vboId[5] = 0; // Vertex buffer: texcoords2 + mesh->vboId[6] = 0; // Vertex buffer: indices + +#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) + mesh->vaoId = rlLoadVertexArray(); + rlEnableVertexArray(mesh->vaoId); + + // NOTE: Attributes must be uploaded considering default locations points + + // Enable vertex attributes: position (shader-location = 0) + void *vertices = mesh->animVertices != NULL ? mesh->animVertices : mesh->vertices; + mesh->vboId[0] = rlLoadVertexBuffer(vertices, mesh->vertexCount*3*sizeof(float), dynamic); + rlSetVertexAttribute(0, 3, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(0); + + // Enable vertex attributes: texcoords (shader-location = 1) + mesh->vboId[1] = rlLoadVertexBuffer(mesh->texcoords, mesh->vertexCount*2*sizeof(float), dynamic); + rlSetVertexAttribute(1, 2, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(1); + + if (mesh->normals != NULL) + { + // Enable vertex attributes: normals (shader-location = 2) + void *normals = mesh->animNormals != NULL ? mesh->animNormals : mesh->normals; + mesh->vboId[2] = rlLoadVertexBuffer(normals, mesh->vertexCount*3*sizeof(float), dynamic); + rlSetVertexAttribute(2, 3, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(2); + } + else + { + // Default color vertex attribute set to WHITE + float value[3] = { 1.0f, 1.0f, 1.0f }; + rlSetVertexAttributeDefault(2, value, SHADER_ATTRIB_VEC3, 3); + rlDisableVertexAttribute(2); + } + + if (mesh->colors != NULL) + { + // Enable vertex attribute: color (shader-location = 3) + mesh->vboId[3] = rlLoadVertexBuffer(mesh->colors, mesh->vertexCount*4*sizeof(unsigned char), dynamic); + rlSetVertexAttribute(3, 4, RL_UNSIGNED_BYTE, 1, 0, 0); + rlEnableVertexAttribute(3); + } + else + { + // Default color vertex attribute set to WHITE + float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; + rlSetVertexAttributeDefault(3, value, SHADER_ATTRIB_VEC4, 4); + rlDisableVertexAttribute(3); + } + + if (mesh->tangents != NULL) + { + // Enable vertex attribute: tangent (shader-location = 4) + mesh->vboId[4] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), dynamic); + rlSetVertexAttribute(4, 4, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(4); + } + else + { + // Default tangents vertex attribute + float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; + rlSetVertexAttributeDefault(4, value, SHADER_ATTRIB_VEC4, 4); + rlDisableVertexAttribute(4); + } + + if (mesh->texcoords2 != NULL) + { + // Enable vertex attribute: texcoord2 (shader-location = 5) + mesh->vboId[5] = rlLoadVertexBuffer(mesh->texcoords2, mesh->vertexCount*2*sizeof(float), dynamic); + rlSetVertexAttribute(5, 2, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(5); + } + else + { + // Default texcoord2 vertex attribute + float value[2] = { 0.0f, 0.0f }; + rlSetVertexAttributeDefault(5, value, SHADER_ATTRIB_VEC2, 2); + rlDisableVertexAttribute(5); + } + + if (mesh->indices != NULL) + { + mesh->vboId[6] = rlLoadVertexBufferElement(mesh->indices, mesh->triangleCount*3*sizeof(unsigned short), dynamic); + } + + if (mesh->vaoId > 0) TRACELOG(LOG_INFO, "VAO: [ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId); + else TRACELOG(LOG_INFO, "VBO: Mesh uploaded successfully to VRAM (GPU)"); + + rlDisableVertexArray(); +#endif +} + +// Update mesh vertex data in GPU for a specific buffer index +void UpdateMeshBuffer(Mesh mesh, int index, const void *data, int dataSize, int offset) +{ + rlUpdateVertexBuffer(mesh.vboId[index], data, dataSize, offset); +} + +// Draw a 3d mesh with material and transform +void DrawMesh(Mesh mesh, Material material, Matrix transform) +{ +#if defined(GRAPHICS_API_OPENGL_11) + #define GL_VERTEX_ARRAY 0x8074 + #define GL_NORMAL_ARRAY 0x8075 + #define GL_COLOR_ARRAY 0x8076 + #define GL_TEXTURE_COORD_ARRAY 0x8078 + + rlEnableTexture(material.maps[MATERIAL_MAP_DIFFUSE].texture.id); + + rlEnableStatePointer(GL_VERTEX_ARRAY, mesh.vertices); + rlEnableStatePointer(GL_TEXTURE_COORD_ARRAY, mesh.texcoords); + rlEnableStatePointer(GL_NORMAL_ARRAY, mesh.normals); + rlEnableStatePointer(GL_COLOR_ARRAY, mesh.colors); + + rlPushMatrix(); + rlMultMatrixf(MatrixToFloat(transform)); + rlColor4ub(material.maps[MATERIAL_MAP_DIFFUSE].color.r, + material.maps[MATERIAL_MAP_DIFFUSE].color.g, + material.maps[MATERIAL_MAP_DIFFUSE].color.b, + material.maps[MATERIAL_MAP_DIFFUSE].color.a); + + if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, mesh.indices); + else rlDrawVertexArray(0, mesh.vertexCount); + rlPopMatrix(); + + rlDisableStatePointer(GL_VERTEX_ARRAY); + rlDisableStatePointer(GL_TEXTURE_COORD_ARRAY); + rlDisableStatePointer(GL_NORMAL_ARRAY); + rlDisableStatePointer(GL_COLOR_ARRAY); + + rlDisableTexture(); +#endif + +#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) + // Bind shader program + rlEnableShader(material.shader.id); + + // Send required data to shader (matrices, values) + //----------------------------------------------------- + // Upload to shader material.colDiffuse + if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1) + { + float values[4] = { + (float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f, + (float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f, + (float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f, + (float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f + }; + + rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1); + } + + // Upload to shader material.colSpecular (if location available) + if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1) + { + float values[4] = { + (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.r/255.0f, + (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.g/255.0f, + (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.b/255.0f, + (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.a/255.0f + }; + + rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1); + } + + // Get a copy of current matrices to work with, + // just in case stereo render is required and we need to modify them + // NOTE: At this point the modelview matrix just contains the view matrix (camera) + // That's because BeginMode3D() sets it and there is no model-drawing function + // that modifies it, all use rlPushMatrix() and rlPopMatrix() + Matrix matModel = MatrixIdentity(); + Matrix matView = rlGetMatrixModelview(); + Matrix matModelView = MatrixIdentity(); + Matrix matProjection = rlGetMatrixProjection(); + + // Upload view and projection matrices (if locations available) + if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView); + if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection); + + // Model transformation matrix is send to shader uniform location: SHADER_LOC_MATRIX_MODEL + if (material.shader.locs[SHADER_LOC_MATRIX_MODEL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MODEL], transform); + + // Accumulate several model transformations: + // transform: model transformation provided (includes DrawModel() params combined with model.transform) + // rlGetMatrixTransform(): rlgl internal transform matrix due to push/pop matrix stack + matModel = MatrixMultiply(transform, rlGetMatrixTransform()); + + // Get model-view matrix + matModelView = MatrixMultiply(matModel, matView); + + // Upload model normal matrix (if locations available) + if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModel))); + //----------------------------------------------------- + + // Bind active texture maps (if available) + for (int i = 0; i < MAX_MATERIAL_MAPS; i++) + { + if (material.maps[i].texture.id > 0) + { + // Select current shader texture slot + rlActiveTextureSlot(i); + + // Enable texture for active slot + if ((i == MATERIAL_MAP_IRRADIANCE) || + (i == MATERIAL_MAP_PREFILTER) || + (i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id); + else rlEnableTexture(material.maps[i].texture.id); + + rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1); + } + } + + // Try binding vertex array objects (VAO) + // or use VBOs if not possible + if (!rlEnableVertexArray(mesh.vaoId)) + { + // Bind mesh VBO data: vertex position (shader-location = 0) + rlEnableVertexBuffer(mesh.vboId[0]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]); + + // Bind mesh VBO data: vertex texcoords (shader-location = 1) + rlEnableVertexBuffer(mesh.vboId[1]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]); + + if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1) + { + // Bind mesh VBO data: vertex normals (shader-location = 2) + rlEnableVertexBuffer(mesh.vboId[2]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]); + } + + // Bind mesh VBO data: vertex colors (shader-location = 3, if available) + if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1) + { + if (mesh.vboId[3] != 0) + { + rlEnableVertexBuffer(mesh.vboId[3]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]); + } + else + { + // Set default value for unused attribute + // NOTE: Required when using default shader and no VAO support + float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; + rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC4, 4); + rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]); + } + } + + // Bind mesh VBO data: vertex tangents (shader-location = 4, if available) + if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1) + { + rlEnableVertexBuffer(mesh.vboId[4]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]); + } + + // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available) + if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1) + { + rlEnableVertexBuffer(mesh.vboId[5]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]); + } + + if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[6]); + } + + int eyeCount = 1; + if (rlIsStereoRenderEnabled()) eyeCount = 2; + + for (int eye = 0; eye < eyeCount; eye++) + { + // Calculate model-view-projection matrix (MVP) + Matrix matModelViewProjection = MatrixIdentity(); + if (eyeCount == 1) matModelViewProjection = MatrixMultiply(matModelView, matProjection); + else + { + // Setup current eye viewport (half screen width) + rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight()); + matModelViewProjection = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye)); + } + + // Send combined model-view-projection matrix to shader + rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matModelViewProjection); + + // Draw mesh + if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, 0); + else rlDrawVertexArray(0, mesh.vertexCount); + } + + // Unbind all binded texture maps + for (int i = 0; i < MAX_MATERIAL_MAPS; i++) + { + // Select current shader texture slot + rlActiveTextureSlot(i); + + // Disable texture for active slot + if ((i == MATERIAL_MAP_IRRADIANCE) || + (i == MATERIAL_MAP_PREFILTER) || + (i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap(); + else rlDisableTexture(); + } + + // Disable all possible vertex array objects (or VBOs) + rlDisableVertexArray(); + rlDisableVertexBuffer(); + rlDisableVertexBufferElement(); + + // Disable shader program + rlDisableShader(); + + // Restore rlgl internal modelview and projection matrices + rlSetMatrixModelview(matView); + rlSetMatrixProjection(matProjection); +#endif +} + +// Draw multiple mesh instances with material and different transforms +void DrawMeshInstanced(Mesh mesh, Material material, const Matrix *transforms, int instances) +{ +#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) + // Instancing required variables + float16 *instanceTransforms = NULL; + unsigned int instancesVboId = 0; + + // Bind shader program + rlEnableShader(material.shader.id); + + // Send required data to shader (matrices, values) + //----------------------------------------------------- + // Upload to shader material.colDiffuse + if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1) + { + float values[4] = { + (float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f, + (float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f, + (float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f, + (float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f + }; + + rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1); + } + + // Upload to shader material.colSpecular (if location available) + if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1) + { + float values[4] = { + (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.r/255.0f, + (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.g/255.0f, + (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.b/255.0f, + (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.a/255.0f + }; + + rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1); + } + + // Get a copy of current matrices to work with, + // just in case stereo render is required and we need to modify them + // NOTE: At this point the modelview matrix just contains the view matrix (camera) + // That's because BeginMode3D() sets it and there is no model-drawing function + // that modifies it, all use rlPushMatrix() and rlPopMatrix() + Matrix matModel = MatrixIdentity(); + Matrix matView = rlGetMatrixModelview(); + Matrix matModelView = MatrixIdentity(); + Matrix matProjection = rlGetMatrixProjection(); + + // Upload view and projection matrices (if locations available) + if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView); + if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection); + + // Create instances buffer + instanceTransforms = (float16 *)RL_MALLOC(instances*sizeof(float16)); + + // Fill buffer with instances transformations as float16 arrays + for (int i = 0; i < instances; i++) instanceTransforms[i] = MatrixToFloatV(transforms[i]); + + // Enable mesh VAO to attach new buffer + rlEnableVertexArray(mesh.vaoId); + + // This could alternatively use a static VBO and either glMapBuffer() or glBufferSubData(). + // It isn't clear which would be reliably faster in all cases and on all platforms, + // anecdotally glMapBuffer() seems very slow (syncs) while glBufferSubData() seems + // no faster, since we're transferring all the transform matrices anyway + instancesVboId = rlLoadVertexBuffer(instanceTransforms, instances*sizeof(float16), false); + + // Instances transformation matrices are send to shader attribute location: SHADER_LOC_MATRIX_MODEL + for (unsigned int i = 0; i < 4; i++) + { + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 4, RL_FLOAT, 0, sizeof(Matrix), (void *)(i*sizeof(Vector4))); + rlSetVertexAttributeDivisor(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 1); + } + + rlDisableVertexBuffer(); + rlDisableVertexArray(); + + // Accumulate internal matrix transform (push/pop) and view matrix + // NOTE: In this case, model instance transformation must be computed in the shader + matModelView = MatrixMultiply(rlGetMatrixTransform(), matView); + + // Upload model normal matrix (if locations available) + if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModel))); + //----------------------------------------------------- + + // Bind active texture maps (if available) + for (int i = 0; i < MAX_MATERIAL_MAPS; i++) + { + if (material.maps[i].texture.id > 0) + { + // Select current shader texture slot + rlActiveTextureSlot(i); + + // Enable texture for active slot + if ((i == MATERIAL_MAP_IRRADIANCE) || + (i == MATERIAL_MAP_PREFILTER) || + (i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id); + else rlEnableTexture(material.maps[i].texture.id); + + rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1); + } + } + + // Try binding vertex array objects (VAO) + // or use VBOs if not possible + if (!rlEnableVertexArray(mesh.vaoId)) + { + // Bind mesh VBO data: vertex position (shader-location = 0) + rlEnableVertexBuffer(mesh.vboId[0]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]); + + // Bind mesh VBO data: vertex texcoords (shader-location = 1) + rlEnableVertexBuffer(mesh.vboId[1]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]); + + if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1) + { + // Bind mesh VBO data: vertex normals (shader-location = 2) + rlEnableVertexBuffer(mesh.vboId[2]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]); + } + + // Bind mesh VBO data: vertex colors (shader-location = 3, if available) + if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1) + { + if (mesh.vboId[3] != 0) + { + rlEnableVertexBuffer(mesh.vboId[3]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]); + } + else + { + // Set default value for unused attribute + // NOTE: Required when using default shader and no VAO support + float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; + rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC4, 4); + rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]); + } + } + + // Bind mesh VBO data: vertex tangents (shader-location = 4, if available) + if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1) + { + rlEnableVertexBuffer(mesh.vboId[4]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]); + } + + // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available) + if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1) + { + rlEnableVertexBuffer(mesh.vboId[5]); + rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]); + } + + if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[6]); + } + + int eyeCount = 1; + if (rlIsStereoRenderEnabled()) eyeCount = 2; + + for (int eye = 0; eye < eyeCount; eye++) + { + // Calculate model-view-projection matrix (MVP) + Matrix matModelViewProjection = MatrixIdentity(); + if (eyeCount == 1) matModelViewProjection = MatrixMultiply(matModelView, matProjection); + else + { + // Setup current eye viewport (half screen width) + rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight()); + matModelViewProjection = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye)); + } + + // Send combined model-view-projection matrix to shader + rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matModelViewProjection); + + // Draw mesh instanced + if (mesh.indices != NULL) rlDrawVertexArrayElementsInstanced(0, mesh.triangleCount*3, 0, instances); + else rlDrawVertexArrayInstanced(0, mesh.vertexCount, instances); + } + + // Unbind all binded texture maps + for (int i = 0; i < MAX_MATERIAL_MAPS; i++) + { + // Select current shader texture slot + rlActiveTextureSlot(i); + + // Disable texture for active slot + if ((i == MATERIAL_MAP_IRRADIANCE) || + (i == MATERIAL_MAP_PREFILTER) || + (i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap(); + else rlDisableTexture(); + } + + // Disable all possible vertex array objects (or VBOs) + rlDisableVertexArray(); + rlDisableVertexBuffer(); + rlDisableVertexBufferElement(); + + // Disable shader program + rlDisableShader(); + + // Remove instance transforms buffer + rlUnloadVertexBuffer(instancesVboId); + RL_FREE(instanceTransforms); +#endif +} + +// Unload mesh from memory (RAM and VRAM) +void UnloadMesh(Mesh mesh) +{ + // Unload rlgl mesh vboId data + rlUnloadVertexArray(mesh.vaoId); + + if (mesh.vboId != NULL) for (int i = 0; i < MAX_MESH_VERTEX_BUFFERS; i++) rlUnloadVertexBuffer(mesh.vboId[i]); + RL_FREE(mesh.vboId); + + RL_FREE(mesh.vertices); + RL_FREE(mesh.texcoords); + RL_FREE(mesh.normals); + RL_FREE(mesh.colors); + RL_FREE(mesh.tangents); + RL_FREE(mesh.texcoords2); + RL_FREE(mesh.indices); + + RL_FREE(mesh.animVertices); + RL_FREE(mesh.animNormals); + RL_FREE(mesh.boneWeights); + RL_FREE(mesh.boneIds); +} + +// Export mesh data to file +bool ExportMesh(Mesh mesh, const char *fileName) +{ + bool success = false; + + if (IsFileExtension(fileName, ".obj")) + { + // Estimated data size, it should be enough... + int dataSize = mesh.vertexCount*(int)strlen("v 0000.00f 0000.00f 0000.00f") + + mesh.vertexCount*(int)strlen("vt 0.000f 0.00f") + + mesh.vertexCount*(int)strlen("vn 0.000f 0.00f 0.00f") + + mesh.triangleCount*(int)strlen("f 00000/00000/00000 00000/00000/00000 00000/00000/00000"); + + // NOTE: Text data buffer size is estimated considering mesh data size + char *txtData = (char *)RL_CALLOC(dataSize*2 + 2000, sizeof(char)); + + int byteCount = 0; + byteCount += sprintf(txtData + byteCount, "# //////////////////////////////////////////////////////////////////////////////////\n"); + byteCount += sprintf(txtData + byteCount, "# // //\n"); + byteCount += sprintf(txtData + byteCount, "# // rMeshOBJ exporter v1.0 - Mesh exported as triangle faces and not optimized //\n"); + byteCount += sprintf(txtData + byteCount, "# // //\n"); + byteCount += sprintf(txtData + byteCount, "# // more info and bugs-report: github.com/raysan5/raylib //\n"); + byteCount += sprintf(txtData + byteCount, "# // feedback and support: ray[at]raylib.com //\n"); + byteCount += sprintf(txtData + byteCount, "# // //\n"); + byteCount += sprintf(txtData + byteCount, "# // Copyright (c) 2018-2022 Ramon Santamaria (@raysan5) //\n"); + byteCount += sprintf(txtData + byteCount, "# // //\n"); + byteCount += sprintf(txtData + byteCount, "# //////////////////////////////////////////////////////////////////////////////////\n\n"); + byteCount += sprintf(txtData + byteCount, "# Vertex Count: %i\n", mesh.vertexCount); + byteCount += sprintf(txtData + byteCount, "# Triangle Count: %i\n\n", mesh.triangleCount); + + byteCount += sprintf(txtData + byteCount, "g mesh\n"); + + for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3) + { + byteCount += sprintf(txtData + byteCount, "v %.2f %.2f %.2f\n", mesh.vertices[v], mesh.vertices[v + 1], mesh.vertices[v + 2]); + } + + for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 2) + { + byteCount += sprintf(txtData + byteCount, "vt %.3f %.3f\n", mesh.texcoords[v], mesh.texcoords[v + 1]); + } + + for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3) + { + byteCount += sprintf(txtData + byteCount, "vn %.3f %.3f %.3f\n", mesh.normals[v], mesh.normals[v + 1], mesh.normals[v + 2]); + } + + if (mesh.indices != NULL) + { + for (int i = 0, v = 0; i < mesh.triangleCount; i++, v += 3) + { + byteCount += sprintf(txtData + byteCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", + mesh.indices[v] + 1, mesh.indices[v] + 1, mesh.indices[v] + 1, + mesh.indices[v + 1] + 1, mesh.indices[v + 1] + 1, mesh.indices[v + 1] + 1, + mesh.indices[v + 2] + 1, mesh.indices[v + 2] + 1, mesh.indices[v + 2] + 1); + } + } + else + { + for (int i = 0, v = 1; i < mesh.triangleCount; i++, v += 3) + { + byteCount += sprintf(txtData + byteCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", v, v, v, v + 1, v + 1, v + 1, v + 2, v + 2, v + 2); + } + } + + byteCount += sprintf(txtData + byteCount, "\n"); + + // NOTE: Text data length exported is determined by '\0' (NULL) character + success = SaveFileText(fileName, txtData); + + RL_FREE(txtData); + } + else if (IsFileExtension(fileName, ".raw")) + { + // TODO: Support additional file formats to export mesh vertex data + } + + return success; +} + +// Load materials from model file +Material *LoadMaterials(const char *fileName, int *materialCount) +{ + Material *materials = NULL; + unsigned int count = 0; + + // TODO: Support IQM and GLTF for materials parsing + +#if defined(SUPPORT_FILEFORMAT_MTL) + if (IsFileExtension(fileName, ".mtl")) + { + tinyobj_material_t *mats = NULL; + + int result = tinyobj_parse_mtl_file(&mats, &count, fileName); + if (result != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to parse materials file", fileName); + + // TODO: Process materials to return + + tinyobj_materials_free(mats, count); + } +#else + TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to load material file", fileName); +#endif + + // Set materials shader to default (DIFFUSE, SPECULAR, NORMAL) + if (materials != NULL) + { + for (unsigned int i = 0; i < count; i++) + { + materials[i].shader.id = rlGetShaderIdDefault(); + materials[i].shader.locs = rlGetShaderLocsDefault(); + } + } + + *materialCount = count; + return materials; +} + +// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps) +Material LoadMaterialDefault(void) +{ + Material material = { 0 }; + material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS, sizeof(MaterialMap)); + + // Using rlgl default shader + material.shader.id = rlGetShaderIdDefault(); + material.shader.locs = rlGetShaderLocsDefault(); + + // Using rlgl default texture (1x1 pixel, UNCOMPRESSED_R8G8B8A8, 1 mipmap) + material.maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 }; + //material.maps[MATERIAL_MAP_NORMAL].texture; // NOTE: By default, not set + //material.maps[MATERIAL_MAP_SPECULAR].texture; // NOTE: By default, not set + + material.maps[MATERIAL_MAP_DIFFUSE].color = WHITE; // Diffuse color + material.maps[MATERIAL_MAP_SPECULAR].color = WHITE; // Specular color + + return material; +} + +// Unload material from memory +void UnloadMaterial(Material material) +{ + // Unload material shader (avoid unloading default shader, managed by raylib) + if (material.shader.id != rlGetShaderIdDefault()) UnloadShader(material.shader); + + // Unload loaded texture maps (avoid unloading default texture, managed by raylib) + if (material.maps != NULL) + { + for (int i = 0; i < MAX_MATERIAL_MAPS; i++) + { + if (material.maps[i].texture.id != rlGetTextureIdDefault()) rlUnloadTexture(material.maps[i].texture.id); + } + } + + RL_FREE(material.maps); +} + +// Set texture for a material map type (MATERIAL_MAP_DIFFUSE, MATERIAL_MAP_SPECULAR...) +// NOTE: Previous texture should be manually unloaded +void SetMaterialTexture(Material *material, int mapType, Texture2D texture) +{ + material->maps[mapType].texture = texture; +} + +// Set the material for a mesh +void SetModelMeshMaterial(Model *model, int meshId, int materialId) +{ + if (meshId >= model->meshCount) TRACELOG(LOG_WARNING, "MESH: Id greater than mesh count"); + else if (materialId >= model->materialCount) TRACELOG(LOG_WARNING, "MATERIAL: Id greater than material count"); + else model->meshMaterial[meshId] = materialId; +} + +// Load model animations from file +ModelAnimation *LoadModelAnimations(const char *fileName, unsigned int *animCount) +{ + ModelAnimation *animations = NULL; + +#if defined(SUPPORT_FILEFORMAT_IQM) + if (IsFileExtension(fileName, ".iqm")) animations = LoadModelAnimationsIQM(fileName, animCount); +#endif +#if defined(SUPPORT_FILEFORMAT_GLTF) + //if (IsFileExtension(fileName, ".gltf;.glb")) animations = LoadModelAnimationGLTF(fileName, animCount); +#endif + + return animations; +} + +// Update model animated vertex data (positions and normals) for a given frame +// NOTE: Updated data is uploaded to GPU +void UpdateModelAnimation(Model model, ModelAnimation anim, int frame) +{ + if ((anim.frameCount > 0) && (anim.bones != NULL) && (anim.framePoses != NULL)) + { + if (frame >= anim.frameCount) frame = frame%anim.frameCount; + + for (int m = 0; m < model.meshCount; m++) + { + Mesh mesh = model.meshes[m]; + if (mesh.boneIds == NULL || mesh.boneWeights == NULL) + { + TRACELOG(LOG_WARNING, "MODEL: UpdateModelAnimation Mesh %i has no connection to bones",m); + continue; + } + + bool updated = false; // set to true when anim vertex information is updated + Vector3 animVertex = { 0 }; + Vector3 animNormal = { 0 }; + + Vector3 inTranslation = { 0 }; + Quaternion inRotation = { 0 }; + // Vector3 inScale = { 0 }; + + Vector3 outTranslation = { 0 }; + Quaternion outRotation = { 0 }; + Vector3 outScale = { 0 }; + + int boneId = 0; + int boneCounter = 0; + float boneWeight = 0.0; + + const int vValues = mesh.vertexCount*3; + for (int vCounter = 0; vCounter < vValues; vCounter+=3) + { + mesh.animVertices[vCounter] = 0; + mesh.animVertices[vCounter + 1] = 0; + mesh.animVertices[vCounter + 2] = 0; + + if (mesh.animNormals!=NULL) + { + mesh.animNormals[vCounter] = 0; + mesh.animNormals[vCounter + 1] = 0; + mesh.animNormals[vCounter + 2] = 0; + } + + // Iterates over 4 bones per vertex + for (int j = 0; j < 4; j++, boneCounter++) + { + boneWeight = mesh.boneWeights[boneCounter]; + // early stop when no transformation will be applied + if (boneWeight == 0.0f) + { + continue; + } + boneId = mesh.boneIds[boneCounter]; + //int boneIdParent = model.bones[boneId].parent; + inTranslation = model.bindPose[boneId].translation; + inRotation = model.bindPose[boneId].rotation; + // inScale = model.bindPose[boneId].scale; + outTranslation = anim.framePoses[frame][boneId].translation; + outRotation = anim.framePoses[frame][boneId].rotation; + outScale = anim.framePoses[frame][boneId].scale; + + // Vertices processing + // NOTE: We use meshes.vertices (default vertex position) to calculate meshes.animVertices (animated vertex position) + animVertex = (Vector3){ mesh.vertices[vCounter], mesh.vertices[vCounter + 1], mesh.vertices[vCounter + 2] }; + animVertex = Vector3Multiply(animVertex, outScale); + animVertex = Vector3Subtract(animVertex, inTranslation); + animVertex = Vector3RotateByQuaternion(animVertex, QuaternionMultiply(outRotation, QuaternionInvert(inRotation))); + animVertex = Vector3Add(animVertex, outTranslation); +// animVertex = Vector3Transform(animVertex, model.transform); + mesh.animVertices[vCounter] += animVertex.x*boneWeight; + mesh.animVertices[vCounter + 1] += animVertex.y*boneWeight; + mesh.animVertices[vCounter + 2] += animVertex.z*boneWeight; + updated = true; + + // Normals processing + // NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals) + if (mesh.normals != NULL) + { + animNormal = (Vector3){ mesh.normals[vCounter], mesh.normals[vCounter + 1], mesh.normals[vCounter + 2] }; + animNormal = Vector3RotateByQuaternion(animNormal, QuaternionMultiply(outRotation, QuaternionInvert(inRotation))); + mesh.animNormals[vCounter] += animNormal.x*boneWeight; + mesh.animNormals[vCounter + 1] += animNormal.y*boneWeight; + mesh.animNormals[vCounter + 2] += animNormal.z*boneWeight; + } + } + } + + // Upload new vertex data to GPU for model drawing + // Only update data when values changed. + if (updated){ + rlUpdateVertexBuffer(mesh.vboId[0], mesh.animVertices, mesh.vertexCount*3*sizeof(float), 0); // Update vertex position + rlUpdateVertexBuffer(mesh.vboId[2], mesh.animNormals, mesh.vertexCount*3*sizeof(float), 0); // Update vertex normals + } + } + } +} + +// Unload animation array data +void UnloadModelAnimations(ModelAnimation *animations, unsigned int count) +{ + for (unsigned int i = 0; i < count; i++) UnloadModelAnimation(animations[i]); + RL_FREE(animations); +} + +// Unload animation data +void UnloadModelAnimation(ModelAnimation anim) +{ + for (int i = 0; i < anim.frameCount; i++) RL_FREE(anim.framePoses[i]); + + RL_FREE(anim.bones); + RL_FREE(anim.framePoses); +} + +// Check model animation skeleton match +// NOTE: Only number of bones and parent connections are checked +bool IsModelAnimationValid(Model model, ModelAnimation anim) +{ + int result = true; + + if (model.boneCount != anim.boneCount) result = false; + else + { + for (int i = 0; i < model.boneCount; i++) + { + if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; } + } + } + + return result; +} + +#if defined(SUPPORT_MESH_GENERATION) +// Generate polygonal mesh +Mesh GenMeshPoly(int sides, float radius) +{ + Mesh mesh = { 0 }; + + if (sides < 3) return mesh; + + int vertexCount = sides*3; + + // Vertices definition + Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); + + float d = 0.0f, dStep = 360.0f/sides; + for (int v = 0; v < vertexCount; v += 3) + { + vertices[v] = (Vector3){ 0.0f, 0.0f, 0.0f }; + vertices[v + 1] = (Vector3){ sinf(DEG2RAD*d)*radius, 0.0f, cosf(DEG2RAD*d)*radius }; + vertices[v + 2] = (Vector3){sinf(DEG2RAD*(d+dStep))*radius, 0.0f, cosf(DEG2RAD*(d+dStep))*radius }; + d += dStep; + } + + // Normals definition + Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); + for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up; + + // TexCoords definition + Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2)); + for (int n = 0; n < vertexCount; n++) texcoords[n] = (Vector2){ 0.0f, 0.0f }; + + mesh.vertexCount = vertexCount; + mesh.triangleCount = sides; + mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); + + // Mesh vertices position array + for (int i = 0; i < mesh.vertexCount; i++) + { + mesh.vertices[3*i] = vertices[i].x; + mesh.vertices[3*i + 1] = vertices[i].y; + mesh.vertices[3*i + 2] = vertices[i].z; + } + + // Mesh texcoords array + for (int i = 0; i < mesh.vertexCount; i++) + { + mesh.texcoords[2*i] = texcoords[i].x; + mesh.texcoords[2*i + 1] = texcoords[i].y; + } + + // Mesh normals array + for (int i = 0; i < mesh.vertexCount; i++) + { + mesh.normals[3*i] = normals[i].x; + mesh.normals[3*i + 1] = normals[i].y; + mesh.normals[3*i + 2] = normals[i].z; + } + + RL_FREE(vertices); + RL_FREE(normals); + RL_FREE(texcoords); + + // Upload vertex data to GPU (static mesh) + // NOTE: mesh.vboId array is allocated inside UploadMesh() + UploadMesh(&mesh, false); + + return mesh; +} + +// Generate plane mesh (with subdivisions) +Mesh GenMeshPlane(float width, float length, int resX, int resZ) +{ + Mesh mesh = { 0 }; + +#define CUSTOM_MESH_GEN_PLANE +#if defined(CUSTOM_MESH_GEN_PLANE) + resX++; + resZ++; + + // Vertices definition + int vertexCount = resX*resZ; // vertices get reused for the faces + + Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); + for (int z = 0; z < resZ; z++) + { + // [-length/2, length/2] + float zPos = ((float)z/(resZ - 1) - 0.5f)*length; + for (int x = 0; x < resX; x++) + { + // [-width/2, width/2] + float xPos = ((float)x/(resX - 1) - 0.5f)*width; + vertices[x + z*resX] = (Vector3){ xPos, 0.0f, zPos }; + } + } + + // Normals definition + Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); + for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up; + + // TexCoords definition + Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2)); + for (int v = 0; v < resZ; v++) + { + for (int u = 0; u < resX; u++) + { + texcoords[u + v*resX] = (Vector2){ (float)u/(resX - 1), (float)v/(resZ - 1) }; + } + } + + // Triangles definition (indices) + int numFaces = (resX - 1)*(resZ - 1); + int *triangles = (int *)RL_MALLOC(numFaces*6*sizeof(int)); + int t = 0; + for (int face = 0; face < numFaces; face++) + { + // Retrieve lower left corner from face ind + int i = face % (resX - 1) + (face/(resZ - 1)*resX); + + triangles[t++] = i + resX; + triangles[t++] = i + 1; + triangles[t++] = i; + + triangles[t++] = i + resX; + triangles[t++] = i + resX + 1; + triangles[t++] = i + 1; + } + + mesh.vertexCount = vertexCount; + mesh.triangleCount = numFaces*2; + mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); + mesh.indices = (unsigned short *)RL_MALLOC(mesh.triangleCount*3*sizeof(unsigned short)); + + // Mesh vertices position array + for (int i = 0; i < mesh.vertexCount; i++) + { + mesh.vertices[3*i] = vertices[i].x; + mesh.vertices[3*i + 1] = vertices[i].y; + mesh.vertices[3*i + 2] = vertices[i].z; + } + + // Mesh texcoords array + for (int i = 0; i < mesh.vertexCount; i++) + { + mesh.texcoords[2*i] = texcoords[i].x; + mesh.texcoords[2*i + 1] = texcoords[i].y; + } + + // Mesh normals array + for (int i = 0; i < mesh.vertexCount; i++) + { + mesh.normals[3*i] = normals[i].x; + mesh.normals[3*i + 1] = normals[i].y; + mesh.normals[3*i + 2] = normals[i].z; + } + + // Mesh indices array initialization + for (int i = 0; i < mesh.triangleCount*3; i++) mesh.indices[i] = triangles[i]; + + RL_FREE(vertices); + RL_FREE(normals); + RL_FREE(texcoords); + RL_FREE(triangles); + +#else // Use par_shapes library to generate plane mesh + + par_shapes_mesh *plane = par_shapes_create_plane(resX, resZ); // No normals/texcoords generated!!! + par_shapes_scale(plane, width, length, 1.0f); + par_shapes_rotate(plane, -PI/2.0f, (float[]){ 1, 0, 0 }); + par_shapes_translate(plane, -width/2, 0.0f, length/2); + + mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float)); + + mesh.vertexCount = plane->ntriangles*3; + mesh.triangleCount = plane->ntriangles; + + for (int k = 0; k < mesh.vertexCount; k++) + { + mesh.vertices[k*3] = plane->points[plane->triangles[k]*3]; + mesh.vertices[k*3 + 1] = plane->points[plane->triangles[k]*3 + 1]; + mesh.vertices[k*3 + 2] = plane->points[plane->triangles[k]*3 + 2]; + + mesh.normals[k*3] = plane->normals[plane->triangles[k]*3]; + mesh.normals[k*3 + 1] = plane->normals[plane->triangles[k]*3 + 1]; + mesh.normals[k*3 + 2] = plane->normals[plane->triangles[k]*3 + 2]; + + mesh.texcoords[k*2] = plane->tcoords[plane->triangles[k]*2]; + mesh.texcoords[k*2 + 1] = plane->tcoords[plane->triangles[k]*2 + 1]; + } + + par_shapes_free_mesh(plane); +#endif + + // Upload vertex data to GPU (static mesh) + UploadMesh(&mesh, false); + + return mesh; +} + +// Generated cuboid mesh +Mesh GenMeshCube(float width, float height, float length) +{ + Mesh mesh = { 0 }; + +#define CUSTOM_MESH_GEN_CUBE +#if defined(CUSTOM_MESH_GEN_CUBE) + float vertices[] = { + -width/2, -height/2, length/2, + width/2, -height/2, length/2, + width/2, height/2, length/2, + -width/2, height/2, length/2, + -width/2, -height/2, -length/2, + -width/2, height/2, -length/2, + width/2, height/2, -length/2, + width/2, -height/2, -length/2, + -width/2, height/2, -length/2, + -width/2, height/2, length/2, + width/2, height/2, length/2, + width/2, height/2, -length/2, + -width/2, -height/2, -length/2, + width/2, -height/2, -length/2, + width/2, -height/2, length/2, + -width/2, -height/2, length/2, + width/2, -height/2, -length/2, + width/2, height/2, -length/2, + width/2, height/2, length/2, + width/2, -height/2, length/2, + -width/2, -height/2, -length/2, + -width/2, -height/2, length/2, + -width/2, height/2, length/2, + -width/2, height/2, -length/2 + }; + + float texcoords[] = { + 0.0f, 0.0f, + 1.0f, 0.0f, + 1.0f, 1.0f, + 0.0f, 1.0f, + 1.0f, 0.0f, + 1.0f, 1.0f, + 0.0f, 1.0f, + 0.0f, 0.0f, + 0.0f, 1.0f, + 0.0f, 0.0f, + 1.0f, 0.0f, + 1.0f, 1.0f, + 1.0f, 1.0f, + 0.0f, 1.0f, + 0.0f, 0.0f, + 1.0f, 0.0f, + 1.0f, 0.0f, + 1.0f, 1.0f, + 0.0f, 1.0f, + 0.0f, 0.0f, + 0.0f, 0.0f, + 1.0f, 0.0f, + 1.0f, 1.0f, + 0.0f, 1.0f + }; + + float normals[] = { + 0.0f, 0.0f, 1.0f, + 0.0f, 0.0f, 1.0f, + 0.0f, 0.0f, 1.0f, + 0.0f, 0.0f, 1.0f, + 0.0f, 0.0f,-1.0f, + 0.0f, 0.0f,-1.0f, + 0.0f, 0.0f,-1.0f, + 0.0f, 0.0f,-1.0f, + 0.0f, 1.0f, 0.0f, + 0.0f, 1.0f, 0.0f, + 0.0f, 1.0f, 0.0f, + 0.0f, 1.0f, 0.0f, + 0.0f,-1.0f, 0.0f, + 0.0f,-1.0f, 0.0f, + 0.0f,-1.0f, 0.0f, + 0.0f,-1.0f, 0.0f, + 1.0f, 0.0f, 0.0f, + 1.0f, 0.0f, 0.0f, + 1.0f, 0.0f, 0.0f, + 1.0f, 0.0f, 0.0f, + -1.0f, 0.0f, 0.0f, + -1.0f, 0.0f, 0.0f, + -1.0f, 0.0f, 0.0f, + -1.0f, 0.0f, 0.0f + }; + + mesh.vertices = (float *)RL_MALLOC(24*3*sizeof(float)); + memcpy(mesh.vertices, vertices, 24*3*sizeof(float)); + + mesh.texcoords = (float *)RL_MALLOC(24*2*sizeof(float)); + memcpy(mesh.texcoords, texcoords, 24*2*sizeof(float)); + + mesh.normals = (float *)RL_MALLOC(24*3*sizeof(float)); + memcpy(mesh.normals, normals, 24*3*sizeof(float)); + + mesh.indices = (unsigned short *)RL_MALLOC(36*sizeof(unsigned short)); + + int k = 0; + + // Indices can be initialized right now + for (int i = 0; i < 36; i += 6) + { + mesh.indices[i] = 4*k; + mesh.indices[i + 1] = 4*k + 1; + mesh.indices[i + 2] = 4*k + 2; + mesh.indices[i + 3] = 4*k; + mesh.indices[i + 4] = 4*k + 2; + mesh.indices[i + 5] = 4*k + 3; + + k++; + } + + mesh.vertexCount = 24; + mesh.triangleCount = 12; + +#else // Use par_shapes library to generate cube mesh +/* +// Platonic solids: +par_shapes_mesh* par_shapes_create_tetrahedron(); // 4 sides polyhedron (pyramid) +par_shapes_mesh* par_shapes_create_cube(); // 6 sides polyhedron (cube) +par_shapes_mesh* par_shapes_create_octahedron(); // 8 sides polyhedron (dyamond) +par_shapes_mesh* par_shapes_create_dodecahedron(); // 12 sides polyhedron +par_shapes_mesh* par_shapes_create_icosahedron(); // 20 sides polyhedron +*/ + // Platonic solid generation: cube (6 sides) + // NOTE: No normals/texcoords generated by default + par_shapes_mesh *cube = par_shapes_create_cube(); + cube->tcoords = PAR_MALLOC(float, 2*cube->npoints); + for (int i = 0; i < 2*cube->npoints; i++) cube->tcoords[i] = 0.0f; + par_shapes_scale(cube, width, height, length); + par_shapes_translate(cube, -width/2, 0.0f, -length/2); + par_shapes_compute_normals(cube); + + mesh.vertices = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(cube->ntriangles*3*2*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float)); + + mesh.vertexCount = cube->ntriangles*3; + mesh.triangleCount = cube->ntriangles; + + for (int k = 0; k < mesh.vertexCount; k++) + { + mesh.vertices[k*3] = cube->points[cube->triangles[k]*3]; + mesh.vertices[k*3 + 1] = cube->points[cube->triangles[k]*3 + 1]; + mesh.vertices[k*3 + 2] = cube->points[cube->triangles[k]*3 + 2]; + + mesh.normals[k*3] = cube->normals[cube->triangles[k]*3]; + mesh.normals[k*3 + 1] = cube->normals[cube->triangles[k]*3 + 1]; + mesh.normals[k*3 + 2] = cube->normals[cube->triangles[k]*3 + 2]; + + mesh.texcoords[k*2] = cube->tcoords[cube->triangles[k]*2]; + mesh.texcoords[k*2 + 1] = cube->tcoords[cube->triangles[k]*2 + 1]; + } + + par_shapes_free_mesh(cube); +#endif + + // Upload vertex data to GPU (static mesh) + UploadMesh(&mesh, false); + + return mesh; +} + +// Generate sphere mesh (standard sphere) +Mesh GenMeshSphere(float radius, int rings, int slices) +{ + Mesh mesh = { 0 }; + + if ((rings >= 3) && (slices >= 3)) + { + par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings); + par_shapes_scale(sphere, radius, radius, radius); + // NOTE: Soft normals are computed internally + + mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); + + mesh.vertexCount = sphere->ntriangles*3; + mesh.triangleCount = sphere->ntriangles; + + for (int k = 0; k < mesh.vertexCount; k++) + { + mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3]; + mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1]; + mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2]; + + mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3]; + mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1]; + mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2]; + + mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2]; + mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1]; + } + + par_shapes_free_mesh(sphere); + + // Upload vertex data to GPU (static mesh) + UploadMesh(&mesh, false); + } + else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: sphere"); + + return mesh; +} + +// Generate hemi-sphere mesh (half sphere, no bottom cap) +Mesh GenMeshHemiSphere(float radius, int rings, int slices) +{ + Mesh mesh = { 0 }; + + if ((rings >= 3) && (slices >= 3)) + { + if (radius < 0.0f) radius = 0.0f; + + par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings); + par_shapes_scale(sphere, radius, radius, radius); + // NOTE: Soft normals are computed internally + + mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); + + mesh.vertexCount = sphere->ntriangles*3; + mesh.triangleCount = sphere->ntriangles; + + for (int k = 0; k < mesh.vertexCount; k++) + { + mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3]; + mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1]; + mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2]; + + mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3]; + mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1]; + mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2]; + + mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2]; + mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1]; + } + + par_shapes_free_mesh(sphere); + + // Upload vertex data to GPU (static mesh) + UploadMesh(&mesh, false); + } + else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: hemisphere"); + + return mesh; +} + +// Generate cylinder mesh +Mesh GenMeshCylinder(float radius, float height, int slices) +{ + Mesh mesh = { 0 }; + + if (slices >= 3) + { + // Instance a cylinder that sits on the Z=0 plane using the given tessellation + // levels across the UV domain. Think of "slices" like a number of pizza + // slices, and "stacks" like a number of stacked rings. + // Height and radius are both 1.0, but they can easily be changed with par_shapes_scale + par_shapes_mesh *cylinder = par_shapes_create_cylinder(slices, 8); + par_shapes_scale(cylinder, radius, radius, height); + par_shapes_rotate(cylinder, -PI/2.0f, (float[]){ 1, 0, 0 }); + + // Generate an orientable disk shape (top cap) + par_shapes_mesh *capTop = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, 1 }); + capTop->tcoords = PAR_MALLOC(float, 2*capTop->npoints); + for (int i = 0; i < 2*capTop->npoints; i++) capTop->tcoords[i] = 0.0f; + par_shapes_rotate(capTop, -PI/2.0f, (float[]){ 1, 0, 0 }); + par_shapes_rotate(capTop, 90*DEG2RAD, (float[]){ 0, 1, 0 }); + par_shapes_translate(capTop, 0, height, 0); + + // Generate an orientable disk shape (bottom cap) + par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 }); + capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints); + for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f; + par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 }); + par_shapes_rotate(capBottom, -90*DEG2RAD, (float[]){ 0, 1, 0 }); + + par_shapes_merge_and_free(cylinder, capTop); + par_shapes_merge_and_free(cylinder, capBottom); + + mesh.vertices = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(cylinder->ntriangles*3*2*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float)); + + mesh.vertexCount = cylinder->ntriangles*3; + mesh.triangleCount = cylinder->ntriangles; + + for (int k = 0; k < mesh.vertexCount; k++) + { + mesh.vertices[k*3] = cylinder->points[cylinder->triangles[k]*3]; + mesh.vertices[k*3 + 1] = cylinder->points[cylinder->triangles[k]*3 + 1]; + mesh.vertices[k*3 + 2] = cylinder->points[cylinder->triangles[k]*3 + 2]; + + mesh.normals[k*3] = cylinder->normals[cylinder->triangles[k]*3]; + mesh.normals[k*3 + 1] = cylinder->normals[cylinder->triangles[k]*3 + 1]; + mesh.normals[k*3 + 2] = cylinder->normals[cylinder->triangles[k]*3 + 2]; + + mesh.texcoords[k*2] = cylinder->tcoords[cylinder->triangles[k]*2]; + mesh.texcoords[k*2 + 1] = cylinder->tcoords[cylinder->triangles[k]*2 + 1]; + } + + par_shapes_free_mesh(cylinder); + + // Upload vertex data to GPU (static mesh) + UploadMesh(&mesh, false); + } + else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cylinder"); + + return mesh; +} + +// Generate cone/pyramid mesh +Mesh GenMeshCone(float radius, float height, int slices) +{ + Mesh mesh = { 0 }; + + if (slices >= 3) + { + // Instance a cone that sits on the Z=0 plane using the given tessellation + // levels across the UV domain. Think of "slices" like a number of pizza + // slices, and "stacks" like a number of stacked rings. + // Height and radius are both 1.0, but they can easily be changed with par_shapes_scale + par_shapes_mesh *cone = par_shapes_create_cone(slices, 8); + par_shapes_scale(cone, radius, radius, height); + par_shapes_rotate(cone, -PI/2.0f, (float[]){ 1, 0, 0 }); + par_shapes_rotate(cone, PI/2.0f, (float[]){ 0, 1, 0 }); + + // Generate an orientable disk shape (bottom cap) + par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 }); + capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints); + for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f; + par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 }); + + par_shapes_merge_and_free(cone, capBottom); + + mesh.vertices = (float *)RL_MALLOC(cone->ntriangles*3*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(cone->ntriangles*3*2*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(cone->ntriangles*3*3*sizeof(float)); + + mesh.vertexCount = cone->ntriangles*3; + mesh.triangleCount = cone->ntriangles; + + for (int k = 0; k < mesh.vertexCount; k++) + { + mesh.vertices[k*3] = cone->points[cone->triangles[k]*3]; + mesh.vertices[k*3 + 1] = cone->points[cone->triangles[k]*3 + 1]; + mesh.vertices[k*3 + 2] = cone->points[cone->triangles[k]*3 + 2]; + + mesh.normals[k*3] = cone->normals[cone->triangles[k]*3]; + mesh.normals[k*3 + 1] = cone->normals[cone->triangles[k]*3 + 1]; + mesh.normals[k*3 + 2] = cone->normals[cone->triangles[k]*3 + 2]; + + mesh.texcoords[k*2] = cone->tcoords[cone->triangles[k]*2]; + mesh.texcoords[k*2 + 1] = cone->tcoords[cone->triangles[k]*2 + 1]; + } + + par_shapes_free_mesh(cone); + + // Upload vertex data to GPU (static mesh) + UploadMesh(&mesh, false); + } + else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cone"); + + return mesh; +} + +// Generate torus mesh +Mesh GenMeshTorus(float radius, float size, int radSeg, int sides) +{ + Mesh mesh = { 0 }; + + if ((sides >= 3) && (radSeg >= 3)) + { + if (radius > 1.0f) radius = 1.0f; + else if (radius < 0.1f) radius = 0.1f; + + // Create a donut that sits on the Z=0 plane with the specified inner radius + // The outer radius can be controlled with par_shapes_scale + par_shapes_mesh *torus = par_shapes_create_torus(radSeg, sides, radius); + par_shapes_scale(torus, size/2, size/2, size/2); + + mesh.vertices = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(torus->ntriangles*3*2*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float)); + + mesh.vertexCount = torus->ntriangles*3; + mesh.triangleCount = torus->ntriangles; + + for (int k = 0; k < mesh.vertexCount; k++) + { + mesh.vertices[k*3] = torus->points[torus->triangles[k]*3]; + mesh.vertices[k*3 + 1] = torus->points[torus->triangles[k]*3 + 1]; + mesh.vertices[k*3 + 2] = torus->points[torus->triangles[k]*3 + 2]; + + mesh.normals[k*3] = torus->normals[torus->triangles[k]*3]; + mesh.normals[k*3 + 1] = torus->normals[torus->triangles[k]*3 + 1]; + mesh.normals[k*3 + 2] = torus->normals[torus->triangles[k]*3 + 2]; + + mesh.texcoords[k*2] = torus->tcoords[torus->triangles[k]*2]; + mesh.texcoords[k*2 + 1] = torus->tcoords[torus->triangles[k]*2 + 1]; + } + + par_shapes_free_mesh(torus); + + // Upload vertex data to GPU (static mesh) + UploadMesh(&mesh, false); + } + else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: torus"); + + return mesh; +} + +// Generate trefoil knot mesh +Mesh GenMeshKnot(float radius, float size, int radSeg, int sides) +{ + Mesh mesh = { 0 }; + + if ((sides >= 3) && (radSeg >= 3)) + { + if (radius > 3.0f) radius = 3.0f; + else if (radius < 0.5f) radius = 0.5f; + + par_shapes_mesh *knot = par_shapes_create_trefoil_knot(radSeg, sides, radius); + par_shapes_scale(knot, size, size, size); + + mesh.vertices = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(knot->ntriangles*3*2*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float)); + + mesh.vertexCount = knot->ntriangles*3; + mesh.triangleCount = knot->ntriangles; + + for (int k = 0; k < mesh.vertexCount; k++) + { + mesh.vertices[k*3] = knot->points[knot->triangles[k]*3]; + mesh.vertices[k*3 + 1] = knot->points[knot->triangles[k]*3 + 1]; + mesh.vertices[k*3 + 2] = knot->points[knot->triangles[k]*3 + 2]; + + mesh.normals[k*3] = knot->normals[knot->triangles[k]*3]; + mesh.normals[k*3 + 1] = knot->normals[knot->triangles[k]*3 + 1]; + mesh.normals[k*3 + 2] = knot->normals[knot->triangles[k]*3 + 2]; + + mesh.texcoords[k*2] = knot->tcoords[knot->triangles[k]*2]; + mesh.texcoords[k*2 + 1] = knot->tcoords[knot->triangles[k]*2 + 1]; + } + + par_shapes_free_mesh(knot); + + // Upload vertex data to GPU (static mesh) + UploadMesh(&mesh, false); + } + else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: knot"); + + return mesh; +} + +// Generate a mesh from heightmap +// NOTE: Vertex data is uploaded to GPU +Mesh GenMeshHeightmap(Image heightmap, Vector3 size) +{ + #define GRAY_VALUE(c) ((c.r+c.g+c.b)/3) + + Mesh mesh = { 0 }; + + int mapX = heightmap.width; + int mapZ = heightmap.height; + + Color *pixels = LoadImageColors(heightmap); + + // NOTE: One vertex per pixel + mesh.triangleCount = (mapX-1)*(mapZ-1)*2; // One quad every four pixels + + mesh.vertexCount = mesh.triangleCount*3; + + mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); + mesh.colors = NULL; + + int vCounter = 0; // Used to count vertices float by float + int tcCounter = 0; // Used to count texcoords float by float + int nCounter = 0; // Used to count normals float by float + + int trisCounter = 0; + + Vector3 scaleFactor = { size.x/mapX, size.y/255.0f, size.z/mapZ }; + + Vector3 vA = { 0 }; + Vector3 vB = { 0 }; + Vector3 vC = { 0 }; + Vector3 vN = { 0 }; + + for (int z = 0; z < mapZ-1; z++) + { + for (int x = 0; x < mapX-1; x++) + { + // Fill vertices array with data + //---------------------------------------------------------- + + // one triangle - 3 vertex + mesh.vertices[vCounter] = (float)x*scaleFactor.x; + mesh.vertices[vCounter + 1] = (float)GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y; + mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z; + + mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x; + mesh.vertices[vCounter + 4] = (float)GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y; + mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z; + + mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x; + mesh.vertices[vCounter + 7] = (float)GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y; + mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z; + + // another triangle - 3 vertex + mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6]; + mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7]; + mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8]; + + mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3]; + mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4]; + mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5]; + + mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x; + mesh.vertices[vCounter + 16] = (float)GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y; + mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z; + vCounter += 18; // 6 vertex, 18 floats + + // Fill texcoords array with data + //-------------------------------------------------------------- + mesh.texcoords[tcCounter] = (float)x/(mapX - 1); + mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1); + + mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1); + mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1); + + mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1); + mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1); + + mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4]; + mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5]; + + mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2]; + mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3]; + + mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1); + mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1); + tcCounter += 12; // 6 texcoords, 12 floats + + // Fill normals array with data + //-------------------------------------------------------------- + for (int i = 0; i < 18; i += 9) + { + vA.x = mesh.vertices[nCounter + i]; + vA.y = mesh.vertices[nCounter + i + 1]; + vA.z = mesh.vertices[nCounter + i + 2]; + + vB.x = mesh.vertices[nCounter + i + 3]; + vB.y = mesh.vertices[nCounter + i + 4]; + vB.z = mesh.vertices[nCounter + i + 5]; + + vC.x = mesh.vertices[nCounter + i + 6]; + vC.y = mesh.vertices[nCounter + i + 7]; + vC.z = mesh.vertices[nCounter + i + 8]; + + vN = Vector3Normalize(Vector3CrossProduct(Vector3Subtract(vB, vA), Vector3Subtract(vC, vA))); + + mesh.normals[nCounter + i] = vN.x; + mesh.normals[nCounter + i + 1] = vN.y; + mesh.normals[nCounter + i + 2] = vN.z; + + mesh.normals[nCounter + i + 3] = vN.x; + mesh.normals[nCounter + i + 4] = vN.y; + mesh.normals[nCounter + i + 5] = vN.z; + + mesh.normals[nCounter + i + 6] = vN.x; + mesh.normals[nCounter + i + 7] = vN.y; + mesh.normals[nCounter + i + 8] = vN.z; + } + + nCounter += 18; // 6 vertex, 18 floats + trisCounter += 2; + } + } + + UnloadImageColors(pixels); // Unload pixels color data + + // Upload vertex data to GPU (static mesh) + UploadMesh(&mesh, false); + + return mesh; +} + +// Generate a cubes mesh from pixel data +// NOTE: Vertex data is uploaded to GPU +Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize) +{ + #define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a)) + + Mesh mesh = { 0 }; + + Color *pixels = LoadImageColors(cubicmap); + + int mapWidth = cubicmap.width; + int mapHeight = cubicmap.height; + + // NOTE: Max possible number of triangles numCubes*(12 triangles by cube) + int maxTriangles = cubicmap.width*cubicmap.height*12; + + int vCounter = 0; // Used to count vertices + int tcCounter = 0; // Used to count texcoords + int nCounter = 0; // Used to count normals + + float w = cubeSize.x; + float h = cubeSize.z; + float h2 = cubeSize.y; + + Vector3 *mapVertices = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3)); + Vector2 *mapTexcoords = (Vector2 *)RL_MALLOC(maxTriangles*3*sizeof(Vector2)); + Vector3 *mapNormals = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3)); + + // Define the 6 normals of the cube, we will combine them accordingly later... + Vector3 n1 = { 1.0f, 0.0f, 0.0f }; + Vector3 n2 = { -1.0f, 0.0f, 0.0f }; + Vector3 n3 = { 0.0f, 1.0f, 0.0f }; + Vector3 n4 = { 0.0f, -1.0f, 0.0f }; + Vector3 n5 = { 0.0f, 0.0f, -1.0f }; + Vector3 n6 = { 0.0f, 0.0f, 1.0f }; + + // NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6) + typedef struct RectangleF { + float x; + float y; + float width; + float height; + } RectangleF; + + RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f }; + RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f }; + RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f }; + RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f }; + RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f }; + RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f }; + + for (int z = 0; z < mapHeight; ++z) + { + for (int x = 0; x < mapWidth; ++x) + { + // Define the 8 vertex of the cube, we will combine them accordingly later... + Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) }; + Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) }; + Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) }; + Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) }; + Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) }; + Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) }; + Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) }; + Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) }; + + // We check pixel color to be WHITE -> draw full cube + if (COLOR_EQUAL(pixels[z*cubicmap.width + x], WHITE)) + { + // Define triangles and checking collateral cubes + //------------------------------------------------ + + // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4) + // WARNING: Not required for a WHITE cubes, created to allow seeing the map from outside + mapVertices[vCounter] = v1; + mapVertices[vCounter + 1] = v2; + mapVertices[vCounter + 2] = v3; + mapVertices[vCounter + 3] = v1; + mapVertices[vCounter + 4] = v3; + mapVertices[vCounter + 5] = v4; + vCounter += 6; + + mapNormals[nCounter] = n3; + mapNormals[nCounter + 1] = n3; + mapNormals[nCounter + 2] = n3; + mapNormals[nCounter + 3] = n3; + mapNormals[nCounter + 4] = n3; + mapNormals[nCounter + 5] = n3; + nCounter += 6; + + mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y }; + mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height }; + mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; + mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y }; + mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; + mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y }; + tcCounter += 6; + + // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8) + mapVertices[vCounter] = v6; + mapVertices[vCounter + 1] = v8; + mapVertices[vCounter + 2] = v7; + mapVertices[vCounter + 3] = v6; + mapVertices[vCounter + 4] = v5; + mapVertices[vCounter + 5] = v8; + vCounter += 6; + + mapNormals[nCounter] = n4; + mapNormals[nCounter + 1] = n4; + mapNormals[nCounter + 2] = n4; + mapNormals[nCounter + 3] = n4; + mapNormals[nCounter + 4] = n4; + mapNormals[nCounter + 5] = n4; + nCounter += 6; + + mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; + mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; + mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height }; + mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; + mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y }; + mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; + tcCounter += 6; + + // Checking cube on bottom of current cube + if (((z < cubicmap.height - 1) && COLOR_EQUAL(pixels[(z + 1)*cubicmap.width + x], BLACK)) || (z == cubicmap.height - 1)) + { + // Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8 + // NOTE: Collateral occluded faces are not generated + mapVertices[vCounter] = v2; + mapVertices[vCounter + 1] = v7; + mapVertices[vCounter + 2] = v3; + mapVertices[vCounter + 3] = v3; + mapVertices[vCounter + 4] = v7; + mapVertices[vCounter + 5] = v8; + vCounter += 6; + + mapNormals[nCounter] = n6; + mapNormals[nCounter + 1] = n6; + mapNormals[nCounter + 2] = n6; + mapNormals[nCounter + 3] = n6; + mapNormals[nCounter + 4] = n6; + mapNormals[nCounter + 5] = n6; + nCounter += 6; + + mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y }; + mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height }; + mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y }; + mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y }; + mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height }; + mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height }; + tcCounter += 6; + } + + // Checking cube on top of current cube + if (((z > 0) && COLOR_EQUAL(pixels[(z - 1)*cubicmap.width + x], BLACK)) || (z == 0)) + { + // Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5 + // NOTE: Collateral occluded faces are not generated + mapVertices[vCounter] = v1; + mapVertices[vCounter + 1] = v5; + mapVertices[vCounter + 2] = v6; + mapVertices[vCounter + 3] = v1; + mapVertices[vCounter + 4] = v4; + mapVertices[vCounter + 5] = v5; + vCounter += 6; + + mapNormals[nCounter] = n5; + mapNormals[nCounter + 1] = n5; + mapNormals[nCounter + 2] = n5; + mapNormals[nCounter + 3] = n5; + mapNormals[nCounter + 4] = n5; + mapNormals[nCounter + 5] = n5; + nCounter += 6; + + mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y }; + mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height }; + mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height }; + mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y }; + mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y }; + mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height }; + tcCounter += 6; + } + + // Checking cube on right of current cube + if (((x < cubicmap.width - 1) && COLOR_EQUAL(pixels[z*cubicmap.width + (x + 1)], BLACK)) || (x == cubicmap.width - 1)) + { + // Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5 + // NOTE: Collateral occluded faces are not generated + mapVertices[vCounter] = v3; + mapVertices[vCounter + 1] = v8; + mapVertices[vCounter + 2] = v4; + mapVertices[vCounter + 3] = v4; + mapVertices[vCounter + 4] = v8; + mapVertices[vCounter + 5] = v5; + vCounter += 6; + + mapNormals[nCounter] = n1; + mapNormals[nCounter + 1] = n1; + mapNormals[nCounter + 2] = n1; + mapNormals[nCounter + 3] = n1; + mapNormals[nCounter + 4] = n1; + mapNormals[nCounter + 5] = n1; + nCounter += 6; + + mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y }; + mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height }; + mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y }; + mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y }; + mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height }; + mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height }; + tcCounter += 6; + } + + // Checking cube on left of current cube + if (((x > 0) && COLOR_EQUAL(pixels[z*cubicmap.width + (x - 1)], BLACK)) || (x == 0)) + { + // Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7 + // NOTE: Collateral occluded faces are not generated + mapVertices[vCounter] = v1; + mapVertices[vCounter + 1] = v7; + mapVertices[vCounter + 2] = v2; + mapVertices[vCounter + 3] = v1; + mapVertices[vCounter + 4] = v6; + mapVertices[vCounter + 5] = v7; + vCounter += 6; + + mapNormals[nCounter] = n2; + mapNormals[nCounter + 1] = n2; + mapNormals[nCounter + 2] = n2; + mapNormals[nCounter + 3] = n2; + mapNormals[nCounter + 4] = n2; + mapNormals[nCounter + 5] = n2; + nCounter += 6; + + mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y }; + mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height }; + mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y }; + mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y }; + mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height }; + mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height }; + tcCounter += 6; + } + } + // We check pixel color to be BLACK, we will only draw floor and roof + else if (COLOR_EQUAL(pixels[z*cubicmap.width + x], BLACK)) + { + // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4) + mapVertices[vCounter] = v1; + mapVertices[vCounter + 1] = v3; + mapVertices[vCounter + 2] = v2; + mapVertices[vCounter + 3] = v1; + mapVertices[vCounter + 4] = v4; + mapVertices[vCounter + 5] = v3; + vCounter += 6; + + mapNormals[nCounter] = n4; + mapNormals[nCounter + 1] = n4; + mapNormals[nCounter + 2] = n4; + mapNormals[nCounter + 3] = n4; + mapNormals[nCounter + 4] = n4; + mapNormals[nCounter + 5] = n4; + nCounter += 6; + + mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y }; + mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; + mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height }; + mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y }; + mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y }; + mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; + tcCounter += 6; + + // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8) + mapVertices[vCounter] = v6; + mapVertices[vCounter + 1] = v7; + mapVertices[vCounter + 2] = v8; + mapVertices[vCounter + 3] = v6; + mapVertices[vCounter + 4] = v8; + mapVertices[vCounter + 5] = v5; + vCounter += 6; + + mapNormals[nCounter] = n3; + mapNormals[nCounter + 1] = n3; + mapNormals[nCounter + 2] = n3; + mapNormals[nCounter + 3] = n3; + mapNormals[nCounter + 4] = n3; + mapNormals[nCounter + 5] = n3; + nCounter += 6; + + mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; + mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height }; + mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; + mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; + mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; + mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y }; + tcCounter += 6; + } + } + } + + // Move data from mapVertices temp arays to vertices float array + mesh.vertexCount = vCounter; + mesh.triangleCount = vCounter/3; + + mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); + mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); + mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); + mesh.colors = NULL; + + int fCounter = 0; + + // Move vertices data + for (int i = 0; i < vCounter; i++) + { + mesh.vertices[fCounter] = mapVertices[i].x; + mesh.vertices[fCounter + 1] = mapVertices[i].y; + mesh.vertices[fCounter + 2] = mapVertices[i].z; + fCounter += 3; + } + + fCounter = 0; + + // Move normals data + for (int i = 0; i < nCounter; i++) + { + mesh.normals[fCounter] = mapNormals[i].x; + mesh.normals[fCounter + 1] = mapNormals[i].y; + mesh.normals[fCounter + 2] = mapNormals[i].z; + fCounter += 3; + } + + fCounter = 0; + + // Move texcoords data + for (int i = 0; i < tcCounter; i++) + { + mesh.texcoords[fCounter] = mapTexcoords[i].x; + mesh.texcoords[fCounter + 1] = mapTexcoords[i].y; + fCounter += 2; + } + + RL_FREE(mapVertices); + RL_FREE(mapNormals); + RL_FREE(mapTexcoords); + + UnloadImageColors(pixels); // Unload pixels color data + + // Upload vertex data to GPU (static mesh) + UploadMesh(&mesh, false); + + return mesh; +} +#endif // SUPPORT_MESH_GENERATION + +// Compute mesh bounding box limits +// NOTE: minVertex and maxVertex should be transformed by model transform matrix +BoundingBox GetMeshBoundingBox(Mesh mesh) +{ + // Get min and max vertex to construct bounds (AABB) + Vector3 minVertex = { 0 }; + Vector3 maxVertex = { 0 }; + + if (mesh.vertices != NULL) + { + minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] }; + maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] }; + + for (int i = 1; i < mesh.vertexCount; i++) + { + minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] }); + maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] }); + } + } + + // Create the bounding box + BoundingBox box = { 0 }; + box.min = minVertex; + box.max = maxVertex; + + return box; +} + +// Compute mesh tangents +// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates +// Implementation base don: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html +void GenMeshTangents(Mesh *mesh) +{ + if (mesh->tangents == NULL) mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float)); + else + { + RL_FREE(mesh->tangents); + mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float)); + } + + Vector3 *tan1 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3)); + Vector3 *tan2 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3)); + + for (int i = 0; i < mesh->vertexCount; i += 3) + { + // Get triangle vertices + Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] }; + Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] }; + Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] }; + + // Get triangle texcoords + Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] }; + Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] }; + Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] }; + + float x1 = v2.x - v1.x; + float y1 = v2.y - v1.y; + float z1 = v2.z - v1.z; + float x2 = v3.x - v1.x; + float y2 = v3.y - v1.y; + float z2 = v3.z - v1.z; + + float s1 = uv2.x - uv1.x; + float t1 = uv2.y - uv1.y; + float s2 = uv3.x - uv1.x; + float t2 = uv3.y - uv1.y; + + float div = s1*t2 - s2*t1; + float r = (div == 0.0f)? 0.0f : 1.0f/div; + + Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r }; + Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r }; + + tan1[i + 0] = sdir; + tan1[i + 1] = sdir; + tan1[i + 2] = sdir; + + tan2[i + 0] = tdir; + tan2[i + 1] = tdir; + tan2[i + 2] = tdir; + } + + // Compute tangents considering normals + for (int i = 0; i < mesh->vertexCount; i++) + { + Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] }; + Vector3 tangent = tan1[i]; + + // TODO: Review, not sure if tangent computation is right, just used reference proposed maths... +#if defined(COMPUTE_TANGENTS_METHOD_01) + Vector3 tmp = Vector3Subtract(tangent, Vector3Scale(normal, Vector3DotProduct(normal, tangent))); + tmp = Vector3Normalize(tmp); + mesh->tangents[i*4 + 0] = tmp.x; + mesh->tangents[i*4 + 1] = tmp.y; + mesh->tangents[i*4 + 2] = tmp.z; + mesh->tangents[i*4 + 3] = 1.0f; +#else + Vector3OrthoNormalize(&normal, &tangent); + mesh->tangents[i*4 + 0] = tangent.x; + mesh->tangents[i*4 + 1] = tangent.y; + mesh->tangents[i*4 + 2] = tangent.z; + mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f; +#endif + } + + RL_FREE(tan1); + RL_FREE(tan2); + + if (mesh->vboId != NULL) + { + if (mesh->vboId[SHADER_LOC_VERTEX_TANGENT] != 0) + { + // Upate existing vertex buffer + rlUpdateVertexBuffer(mesh->vboId[SHADER_LOC_VERTEX_TANGENT], mesh->tangents, mesh->vertexCount*4*sizeof(float), 0); + } + else + { + // Load a new tangent attributes buffer + mesh->vboId[SHADER_LOC_VERTEX_TANGENT] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), false); + } + + rlEnableVertexArray(mesh->vaoId); + rlSetVertexAttribute(4, 4, RL_FLOAT, 0, 0, 0); + rlEnableVertexAttribute(4); + rlDisableVertexArray(); + } + + TRACELOG(LOG_INFO, "MESH: Tangents data computed and uploaded for provided mesh"); +} + +// Compute mesh binormals (aka bitangent) +void GenMeshBinormals(Mesh *mesh) +{ + for (int i = 0; i < mesh->vertexCount; i++) + { + //Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] }; + //Vector3 tangent = { mesh->tangents[i*4 + 0], mesh->tangents[i*4 + 1], mesh->tangents[i*4 + 2] }; + //Vector3 binormal = Vector3Scale(Vector3CrossProduct(normal, tangent), mesh->tangents[i*4 + 3]); + + // TODO: Register computed binormal in mesh->binormal? + } +} + +// Draw a model (with texture if set) +void DrawModel(Model model, Vector3 position, float scale, Color tint) +{ + Vector3 vScale = { scale, scale, scale }; + Vector3 rotationAxis = { 0.0f, 1.0f, 0.0f }; + + DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint); +} + +// Draw a model with extended parameters +void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint) +{ + // Calculate transformation matrix from function parameters + // Get transform matrix (rotation -> scale -> translation) + Matrix matScale = MatrixScale(scale.x, scale.y, scale.z); + Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD); + Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z); + + Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation); + + // Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform) + model.transform = MatrixMultiply(model.transform, matTransform); + + for (int i = 0; i < model.meshCount; i++) + { + Color color = model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color; + + Color colorTint = WHITE; + colorTint.r = (unsigned char)((((float)color.r/255.0)*((float)tint.r/255.0))*255.0f); + colorTint.g = (unsigned char)((((float)color.g/255.0)*((float)tint.g/255.0))*255.0f); + colorTint.b = (unsigned char)((((float)color.b/255.0)*((float)tint.b/255.0))*255.0f); + colorTint.a = (unsigned char)((((float)color.a/255.0)*((float)tint.a/255.0))*255.0f); + + model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = colorTint; + DrawMesh(model.meshes[i], model.materials[model.meshMaterial[i]], model.transform); + model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = color; + } +} + +// Draw a model wires (with texture if set) +void DrawModelWires(Model model, Vector3 position, float scale, Color tint) +{ + rlEnableWireMode(); + + DrawModel(model, position, scale, tint); + + rlDisableWireMode(); +} + +// Draw a model wires (with texture if set) with extended parameters +void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint) +{ + rlEnableWireMode(); + + DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint); + + rlDisableWireMode(); +} + +// Draw a billboard +void DrawBillboard(Camera camera, Texture2D texture, Vector3 position, float size, Color tint) +{ + Rectangle source = { 0.0f, 0.0f, (float)texture.width, (float)texture.height }; + + DrawBillboardRec(camera, texture, source, position, (Vector2){ size, size }, tint); +} + +// Draw a billboard (part of a texture defined by a rectangle) +void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector2 size, Color tint) +{ + // NOTE: Billboard locked on axis-Y + Vector3 up = { 0.0f, 1.0f, 0.0f }; + + DrawBillboardPro(camera, texture, source, position, up, size, Vector2Zero(), 0.0f, tint); +} + +void DrawBillboardPro(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector3 up, Vector2 size, Vector2 origin, float rotation, Color tint) +{ + // NOTE: Billboard size will maintain source rectangle aspect ratio, size will represent billboard width + Vector2 sizeRatio = { size.y, size.x*(float)source.height/source.width }; + + Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up); + + Vector3 right = { matView.m0, matView.m4, matView.m8 }; + //Vector3 up = { matView.m1, matView.m5, matView.m9 }; + + Vector3 rightScaled = Vector3Scale(right, sizeRatio.x/2); + Vector3 upScaled = Vector3Scale(up, sizeRatio.y/2); + + Vector3 p1 = Vector3Add(rightScaled, upScaled); + Vector3 p2 = Vector3Subtract(rightScaled, upScaled); + + Vector3 topLeft = Vector3Scale(p2, -1); + Vector3 topRight = p1; + Vector3 bottomRight = p2; + Vector3 bottomLeft = Vector3Scale(p1, -1); + + if (rotation != 0.0f) + { + float sinRotation = sinf(rotation*DEG2RAD); + float cosRotation = cosf(rotation*DEG2RAD); + + // NOTE: (-1, 1) is the range where origin.x, origin.y is inside the texture + float rotateAboutX = sizeRatio.x*origin.x/2; + float rotateAboutY = sizeRatio.y*origin.y/2; + + float xtvalue, ytvalue; + float rotatedX, rotatedY; + + xtvalue = Vector3DotProduct(right, topLeft) - rotateAboutX; // Project points to x and y coordinates on the billboard plane + ytvalue = Vector3DotProduct(up, topLeft) - rotateAboutY; + rotatedX = xtvalue*cosRotation - ytvalue*sinRotation + rotateAboutX; // Rotate about the point origin + rotatedY = xtvalue*sinRotation + ytvalue*cosRotation + rotateAboutY; + topLeft = Vector3Add(Vector3Scale(up, rotatedY), Vector3Scale(right, rotatedX)); // Translate back to cartesian coordinates + + xtvalue = Vector3DotProduct(right, topRight) - rotateAboutX; + ytvalue = Vector3DotProduct(up, topRight) - rotateAboutY; + rotatedX = xtvalue*cosRotation - ytvalue*sinRotation + rotateAboutX; + rotatedY = xtvalue*sinRotation + ytvalue*cosRotation + rotateAboutY; + topRight = Vector3Add(Vector3Scale(up, rotatedY), Vector3Scale(right, rotatedX)); + + xtvalue = Vector3DotProduct(right, bottomRight) - rotateAboutX; + ytvalue = Vector3DotProduct(up, bottomRight) - rotateAboutY; + rotatedX = xtvalue*cosRotation - ytvalue*sinRotation + rotateAboutX; + rotatedY = xtvalue*sinRotation + ytvalue*cosRotation + rotateAboutY; + bottomRight = Vector3Add(Vector3Scale(up, rotatedY), Vector3Scale(right, rotatedX)); + + xtvalue = Vector3DotProduct(right, bottomLeft)-rotateAboutX; + ytvalue = Vector3DotProduct(up, bottomLeft)-rotateAboutY; + rotatedX = xtvalue*cosRotation - ytvalue*sinRotation + rotateAboutX; + rotatedY = xtvalue*sinRotation + ytvalue*cosRotation + rotateAboutY; + bottomLeft = Vector3Add(Vector3Scale(up, rotatedY), Vector3Scale(right, rotatedX)); + } + + // Translate points to the draw center (position) + topLeft = Vector3Add(topLeft, position); + topRight = Vector3Add(topRight, position); + bottomRight = Vector3Add(bottomRight, position); + bottomLeft = Vector3Add(bottomLeft, position); + + rlCheckRenderBatchLimit(4); + + rlSetTexture(texture.id); + + rlBegin(RL_QUADS); + rlColor4ub(tint.r, tint.g, tint.b, tint.a); + + // Bottom-left corner for texture and quad + rlTexCoord2f((float)source.x/texture.width, (float)source.y/texture.height); + rlVertex3f(topLeft.x, topLeft.y, topLeft.z); + + // Top-left corner for texture and quad + rlTexCoord2f((float)source.x/texture.width, (float)(source.y + source.height)/texture.height); + rlVertex3f(bottomLeft.x, bottomLeft.y, bottomLeft.z); + + // Top-right corner for texture and quad + rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)(source.y + source.height)/texture.height); + rlVertex3f(bottomRight.x, bottomRight.y, bottomRight.z); + + // Bottom-right corner for texture and quad + rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)source.y/texture.height); + rlVertex3f(topRight.x, topRight.y, topRight.z); + rlEnd(); + + rlSetTexture(0); +} + +// Draw a bounding box with wires +void DrawBoundingBox(BoundingBox box, Color color) +{ + Vector3 size = { 0 }; + + size.x = fabsf(box.max.x - box.min.x); + size.y = fabsf(box.max.y - box.min.y); + size.z = fabsf(box.max.z - box.min.z); + + Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f }; + + DrawCubeWires(center, size.x, size.y, size.z, color); +} + +// Check collision between two spheres +bool CheckCollisionSpheres(Vector3 center1, float radius1, Vector3 center2, float radius2) +{ + bool collision = false; + + // Simple way to check for collision, just checking distance between two points + // Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution + /* + float dx = center1.x - center2.x; // X distance between centers + float dy = center1.y - center2.y; // Y distance between centers + float dz = center1.z - center2.z; // Z distance between centers + + float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers + + if (distance <= (radius1 + radius2)) collision = true; + */ + + // Check for distances squared to avoid sqrtf() + if (Vector3DotProduct(Vector3Subtract(center2, center1), Vector3Subtract(center2, center1)) <= (radius1 + radius2)*(radius1 + radius2)) collision = true; + + return collision; +} + +// Check collision between two boxes +// NOTE: Boxes are defined by two points minimum and maximum +bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2) +{ + bool collision = true; + + if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x)) + { + if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false; + if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false; + } + else collision = false; + + return collision; +} + +// Check collision between box and sphere +bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius) +{ + bool collision = false; + + float dmin = 0; + + if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2); + else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2); + + if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2); + else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2); + + if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2); + else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2); + + if (dmin <= (radius*radius)) collision = true; + + return collision; +} + +// Get collision info between ray and sphere +RayCollision GetRayCollisionSphere(Ray ray, Vector3 center, float radius) +{ + RayCollision collision = { 0 }; + + Vector3 raySpherePos = Vector3Subtract(center, ray.position); + float vector = Vector3DotProduct(raySpherePos, ray.direction); + float distance = Vector3Length(raySpherePos); + float d = radius*radius - (distance*distance - vector*vector); + + collision.hit = d >= 0.0f; + + // Check if ray origin is inside the sphere to calculate the correct collision point + if (distance < radius) + { + collision.distance = vector + sqrtf(d); + + // Calculate collision point + collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance)); + + // Calculate collision normal (pointing outwards) + collision.normal = Vector3Negate(Vector3Normalize(Vector3Subtract(collision.point, center))); + } + else + { + collision.distance = vector - sqrtf(d); + + // Calculate collision point + collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance)); + + // Calculate collision normal (pointing inwards) + collision.normal = Vector3Normalize(Vector3Subtract(collision.point, center)); + } + + return collision; +} + +// Get collision info between ray and box +RayCollision GetRayCollisionBox(Ray ray, BoundingBox box) +{ + RayCollision collision = { 0 }; + + // Note: If ray.position is inside the box, the distance is negative (as if the ray was reversed) + // Reversing ray.direction will give use the correct result. + bool insideBox = (ray.position.x > box.min.x) && (ray.position.x < box.max.x) && + (ray.position.y > box.min.y) && (ray.position.y < box.max.y) && + (ray.position.z > box.min.z) && (ray.position.z < box.max.z); + + if (insideBox) ray.direction = Vector3Negate(ray.direction); + + float t[11] = { 0 }; + + t[8] = 1.0f/ray.direction.x; + t[9] = 1.0f/ray.direction.y; + t[10] = 1.0f/ray.direction.z; + + t[0] = (box.min.x - ray.position.x)*t[8]; + t[1] = (box.max.x - ray.position.x)*t[8]; + t[2] = (box.min.y - ray.position.y)*t[9]; + t[3] = (box.max.y - ray.position.y)*t[9]; + t[4] = (box.min.z - ray.position.z)*t[10]; + t[5] = (box.max.z - ray.position.z)*t[10]; + t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5])); + t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5])); + + collision.hit = !((t[7] < 0) || (t[6] > t[7])); + collision.distance = t[6]; + collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance)); + + // Get box center point + collision.normal = Vector3Lerp(box.min, box.max, 0.5f); + // Get vector center point->hit point + collision.normal = Vector3Subtract(collision.point, collision.normal); + // Scale vector to unit cube + // NOTE: We use an additional .01 to fix numerical errors + collision.normal = Vector3Scale(collision.normal, 2.01f); + collision.normal = Vector3Divide(collision.normal, Vector3Subtract(box.max, box.min)); + // The relevant elemets of the vector are now slightly larger than 1.0f (or smaller than -1.0f) + // and the others are somewhere between -1.0 and 1.0 casting to int is exactly our wanted normal! + collision.normal.x = (float)((int)collision.normal.x); + collision.normal.y = (float)((int)collision.normal.y); + collision.normal.z = (float)((int)collision.normal.z); + + collision.normal = Vector3Normalize(collision.normal); + + if (insideBox) + { + // Reset ray.direction + ray.direction = Vector3Negate(ray.direction); + // Fix result + collision.distance *= -1.0f; + collision.normal = Vector3Negate(collision.normal); + } + + return collision; +} + +// Get collision info between ray and mesh +RayCollision GetRayCollisionMesh(Ray ray, Mesh mesh, Matrix transform) +{ + RayCollision collision = { 0 }; + + // Check if mesh vertex data on CPU for testing + if (mesh.vertices != NULL) + { + int triangleCount = mesh.triangleCount; + + // Test against all triangles in mesh + for (int i = 0; i < triangleCount; i++) + { + Vector3 a, b, c; + Vector3* vertdata = (Vector3*)mesh.vertices; + + if (mesh.indices) + { + a = vertdata[mesh.indices[i*3 + 0]]; + b = vertdata[mesh.indices[i*3 + 1]]; + c = vertdata[mesh.indices[i*3 + 2]]; + } + else + { + a = vertdata[i*3 + 0]; + b = vertdata[i*3 + 1]; + c = vertdata[i*3 + 2]; + } + + a = Vector3Transform(a, transform); + b = Vector3Transform(b, transform); + c = Vector3Transform(c, transform); + + RayCollision triHitInfo = GetRayCollisionTriangle(ray, a, b, c); + + if (triHitInfo.hit) + { + // Save the closest hit triangle + if ((!collision.hit) || (collision.distance > triHitInfo.distance)) collision = triHitInfo; + } + } + } + + return collision; +} + +// Get collision info between ray and model +RayCollision GetRayCollisionModel(Ray ray, Model model) +{ + RayCollision collision = { 0 }; + + for (int m = 0; m < model.meshCount; m++) + { + RayCollision meshHitInfo = GetRayCollisionMesh(ray, model.meshes[m], model.transform); + + if (meshHitInfo.hit) + { + // Save the closest hit mesh + if ((!collision.hit) || (collision.distance > meshHitInfo.distance)) collision = meshHitInfo; + } + } + + return collision; +} + +// Get collision info between ray and triangle +// NOTE: The points are expected to be in counter-clockwise winding +// NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm +RayCollision GetRayCollisionTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3) +{ + #define EPSILON 0.000001 // A small number + + RayCollision collision = { 0 }; + Vector3 edge1 = { 0 }; + Vector3 edge2 = { 0 }; + Vector3 p, q, tv; + float det, invDet, u, v, t; + + // Find vectors for two edges sharing V1 + edge1 = Vector3Subtract(p2, p1); + edge2 = Vector3Subtract(p3, p1); + + // Begin calculating determinant - also used to calculate u parameter + p = Vector3CrossProduct(ray.direction, edge2); + + // If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle + det = Vector3DotProduct(edge1, p); + + // Avoid culling! + if ((det > -EPSILON) && (det < EPSILON)) return collision; + + invDet = 1.0f/det; + + // Calculate distance from V1 to ray origin + tv = Vector3Subtract(ray.position, p1); + + // Calculate u parameter and test bound + u = Vector3DotProduct(tv, p)*invDet; + + // The intersection lies outside of the triangle + if ((u < 0.0f) || (u > 1.0f)) return collision; + + // Prepare to test v parameter + q = Vector3CrossProduct(tv, edge1); + + // Calculate V parameter and test bound + v = Vector3DotProduct(ray.direction, q)*invDet; + + // The intersection lies outside of the triangle + if ((v < 0.0f) || ((u + v) > 1.0f)) return collision; + + t = Vector3DotProduct(edge2, q)*invDet; + + if (t > EPSILON) + { + // Ray hit, get hit point and normal + collision.hit = true; + collision.distance = t; + collision.normal = Vector3Normalize(Vector3CrossProduct(edge1, edge2)); + collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, t)); + } + + return collision; +} + +// Get collision info between ray and quad +// NOTE: The points are expected to be in counter-clockwise winding +RayCollision GetRayCollisionQuad(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 p4) +{ + RayCollision collision = { 0 }; + + collision = GetRayCollisionTriangle(ray, p1, p2, p4); + + if (!collision.hit) collision = GetRayCollisionTriangle(ray, p2, p3, p4); + + return collision; +} + +//---------------------------------------------------------------------------------- +// Module specific Functions Definition +//---------------------------------------------------------------------------------- +#if defined(SUPPORT_FILEFORMAT_OBJ) +// Load OBJ mesh data +// +// Keep the following information in mind when reading this +// - A mesh is created for every material present in the obj file +// - the model.meshCount is therefore the materialCount returned from tinyobj +// - the mesh is automatically triangulated by tinyobj +static Model LoadOBJ(const char *fileName) +{ + Model model = { 0 }; + + tinyobj_attrib_t attrib = { 0 }; + tinyobj_shape_t *meshes = NULL; + unsigned int meshCount = 0; + + tinyobj_material_t *materials = NULL; + unsigned int materialCount = 0; + + char *fileText = LoadFileText(fileName); + + if (fileText != NULL) + { + unsigned int dataSize = (unsigned int)strlen(fileText); + char currentDir[1024] = { 0 }; + strcpy(currentDir, GetWorkingDirectory()); + const char *workingDir = GetDirectoryPath(fileName); + if (CHDIR(workingDir) != 0) + { + TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", workingDir); + } + + unsigned int flags = TINYOBJ_FLAG_TRIANGULATE; + int ret = tinyobj_parse_obj(&attrib, &meshes, &meshCount, &materials, &materialCount, fileText, dataSize, flags); + + if (ret != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load OBJ data", fileName); + else TRACELOG(LOG_INFO, "MODEL: [%s] OBJ data loaded successfully: %i meshes/%i materials", fileName, meshCount, materialCount); + + model.meshCount = materialCount; + + // Init model materials array + if (materialCount > 0) + { + model.materialCount = materialCount; + model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); + TraceLog(LOG_INFO, "MODEL: model has %i material meshes", materialCount); + } + else + { + model.meshCount = 1; + TraceLog(LOG_INFO, "MODEL: No materials, putting all meshes in a default material"); + } + + model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh)); + model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); + + // Count the faces for each material + int *matFaces = RL_CALLOC(model.meshCount, sizeof(int)); + + // iff no materials are present use all faces on one mesh + if (materialCount > 0) + { + for (unsigned int fi = 0; fi < attrib.num_faces; fi++) + { + //tinyobj_vertex_index_t face = attrib.faces[fi]; + int idx = attrib.material_ids[fi]; + matFaces[idx]++; + } + + } + else + { + matFaces[0] = attrib.num_faces; + } + + //-------------------------------------- + // Create the material meshes + + // Running counts/indexes for each material mesh as we are + // building them at the same time + int *vCount = RL_CALLOC(model.meshCount, sizeof(int)); + int *vtCount = RL_CALLOC(model.meshCount, sizeof(int)); + int *vnCount = RL_CALLOC(model.meshCount, sizeof(int)); + int *faceCount = RL_CALLOC(model.meshCount, sizeof(int)); + + // Allocate space for each of the material meshes + for (int mi = 0; mi < model.meshCount; mi++) + { + model.meshes[mi].vertexCount = matFaces[mi]*3; + model.meshes[mi].triangleCount = matFaces[mi]; + model.meshes[mi].vertices = (float *)RL_CALLOC(model.meshes[mi].vertexCount*3, sizeof(float)); + model.meshes[mi].texcoords = (float *)RL_CALLOC(model.meshes[mi].vertexCount*2, sizeof(float)); + model.meshes[mi].normals = (float *)RL_CALLOC(model.meshes[mi].vertexCount*3, sizeof(float)); + model.meshMaterial[mi] = mi; + } + + // Scan through the combined sub meshes and pick out each material mesh + for (unsigned int af = 0; af < attrib.num_faces; af++) + { + int mm = attrib.material_ids[af]; // mesh material for this face + if (mm == -1) { mm = 0; } // no material object.. + + // Get indices for the face + tinyobj_vertex_index_t idx0 = attrib.faces[3*af + 0]; + tinyobj_vertex_index_t idx1 = attrib.faces[3*af + 1]; + tinyobj_vertex_index_t idx2 = attrib.faces[3*af + 2]; + + // Fill vertices buffer (float) using vertex index of the face + for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx0.v_idx*3 + v]; } vCount[mm] +=3; + for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx1.v_idx*3 + v]; } vCount[mm] +=3; + for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx2.v_idx*3 + v]; } vCount[mm] +=3; + + if (attrib.num_texcoords > 0) + { + // Fill texcoords buffer (float) using vertex index of the face + // NOTE: Y-coordinate must be flipped upside-down to account for + // raylib's upside down textures... + model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx0.vt_idx*2 + 0]; + model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx0.vt_idx*2 + 1]; vtCount[mm] += 2; + model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx1.vt_idx*2 + 0]; + model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx1.vt_idx*2 + 1]; vtCount[mm] += 2; + model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx2.vt_idx*2 + 0]; + model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx2.vt_idx*2 + 1]; vtCount[mm] += 2; + } + + if (attrib.num_normals > 0) + { + // Fill normals buffer (float) using vertex index of the face + for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx0.vn_idx*3 + v]; } vnCount[mm] +=3; + for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx1.vn_idx*3 + v]; } vnCount[mm] +=3; + for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx2.vn_idx*3 + v]; } vnCount[mm] +=3; + } + } + + // Init model materials + for (unsigned int m = 0; m < materialCount; m++) + { + // Init material to default + // NOTE: Uses default shader, which only supports MATERIAL_MAP_DIFFUSE + model.materials[m] = LoadMaterialDefault(); + + // Get default texture, in case no texture is defined + // NOTE: rlgl default texture is a 1x1 pixel UNCOMPRESSED_R8G8B8A8 + model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 }; + + if (materials[m].diffuse_texname != NULL) model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTexture(materials[m].diffuse_texname); //char *diffuse_texname; // map_Kd + + model.materials[m].maps[MATERIAL_MAP_DIFFUSE].color = (Color){ (unsigned char)(materials[m].diffuse[0]*255.0f), (unsigned char)(materials[m].diffuse[1]*255.0f), (unsigned char)(materials[m].diffuse[2]*255.0f), 255 }; //float diffuse[3]; + model.materials[m].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f; + + if (materials[m].specular_texname != NULL) model.materials[m].maps[MATERIAL_MAP_SPECULAR].texture = LoadTexture(materials[m].specular_texname); //char *specular_texname; // map_Ks + model.materials[m].maps[MATERIAL_MAP_SPECULAR].color = (Color){ (unsigned char)(materials[m].specular[0]*255.0f), (unsigned char)(materials[m].specular[1]*255.0f), (unsigned char)(materials[m].specular[2]*255.0f), 255 }; //float specular[3]; + model.materials[m].maps[MATERIAL_MAP_SPECULAR].value = 0.0f; + + if (materials[m].bump_texname != NULL) model.materials[m].maps[MATERIAL_MAP_NORMAL].texture = LoadTexture(materials[m].bump_texname); //char *bump_texname; // map_bump, bump + model.materials[m].maps[MATERIAL_MAP_NORMAL].color = WHITE; + model.materials[m].maps[MATERIAL_MAP_NORMAL].value = materials[m].shininess; + + model.materials[m].maps[MATERIAL_MAP_EMISSION].color = (Color){ (unsigned char)(materials[m].emission[0]*255.0f), (unsigned char)(materials[m].emission[1]*255.0f), (unsigned char)(materials[m].emission[2]*255.0f), 255 }; //float emission[3]; + + if (materials[m].displacement_texname != NULL) model.materials[m].maps[MATERIAL_MAP_HEIGHT].texture = LoadTexture(materials[m].displacement_texname); //char *displacement_texname; // disp + } + + tinyobj_attrib_free(&attrib); + tinyobj_shapes_free(meshes, meshCount); + tinyobj_materials_free(materials, materialCount); + + UnloadFileText(fileText); + + RL_FREE(matFaces); + RL_FREE(vCount); + RL_FREE(vtCount); + RL_FREE(vnCount); + RL_FREE(faceCount); + + if (CHDIR(currentDir) != 0) + { + TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", currentDir); + } + } + + return model; +} +#endif + +#if defined(SUPPORT_FILEFORMAT_IQM) +// Load IQM mesh data +static Model LoadIQM(const char *fileName) +{ + #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number + #define IQM_VERSION 2 // only IQM version 2 supported + + #define BONE_NAME_LENGTH 32 // BoneInfo name string length + #define MESH_NAME_LENGTH 32 // Mesh name string length + #define MATERIAL_NAME_LENGTH 32 // Material name string length + + unsigned int fileSize = 0; + unsigned char *fileData = LoadFileData(fileName, &fileSize); + unsigned char *fileDataPtr = fileData; + + // IQM file structs + //----------------------------------------------------------------------------------- + typedef struct IQMHeader { + char magic[16]; + unsigned int version; + unsigned int filesize; + unsigned int flags; + unsigned int num_text, ofs_text; + unsigned int num_meshes, ofs_meshes; + unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays; + unsigned int num_triangles, ofs_triangles, ofs_adjacency; + unsigned int num_joints, ofs_joints; + unsigned int num_poses, ofs_poses; + unsigned int num_anims, ofs_anims; + unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds; + unsigned int num_comment, ofs_comment; + unsigned int num_extensions, ofs_extensions; + } IQMHeader; + + typedef struct IQMMesh { + unsigned int name; + unsigned int material; + unsigned int first_vertex, num_vertexes; + unsigned int first_triangle, num_triangles; + } IQMMesh; + + typedef struct IQMTriangle { + unsigned int vertex[3]; + } IQMTriangle; + + typedef struct IQMJoint { + unsigned int name; + int parent; + float translate[3], rotate[4], scale[3]; + } IQMJoint; + + typedef struct IQMVertexArray { + unsigned int type; + unsigned int flags; + unsigned int format; + unsigned int size; + unsigned int offset; + } IQMVertexArray; + + // NOTE: Below IQM structures are not used but listed for reference + /* + typedef struct IQMAdjacency { + unsigned int triangle[3]; + } IQMAdjacency; + + typedef struct IQMPose { + int parent; + unsigned int mask; + float channeloffset[10]; + float channelscale[10]; + } IQMPose; + + typedef struct IQMAnim { + unsigned int name; + unsigned int first_frame, num_frames; + float framerate; + unsigned int flags; + } IQMAnim; + + typedef struct IQMBounds { + float bbmin[3], bbmax[3]; + float xyradius, radius; + } IQMBounds; + */ + //----------------------------------------------------------------------------------- + + // IQM vertex data types + enum { + IQM_POSITION = 0, + IQM_TEXCOORD = 1, + IQM_NORMAL = 2, + IQM_TANGENT = 3, // NOTE: Tangents unused by default + IQM_BLENDINDEXES = 4, + IQM_BLENDWEIGHTS = 5, + IQM_COLOR = 6, + IQM_CUSTOM = 0x10 // NOTE: Custom vertex values unused by default + }; + + Model model = { 0 }; + + IQMMesh *imesh = NULL; + IQMTriangle *tri = NULL; + IQMVertexArray *va = NULL; + IQMJoint *ijoint = NULL; + + float *vertex = NULL; + float *normal = NULL; + float *text = NULL; + char *blendi = NULL; + unsigned char *blendw = NULL; + unsigned char *color = NULL; + + // In case file can not be read, return an empty model + if (fileDataPtr == NULL) return model; + + // Read IQM header + IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr; + + if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0) + { + TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName); + return model; + } + + if (iqmHeader->version != IQM_VERSION) + { + TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version); + return model; + } + + //fileDataPtr += sizeof(IQMHeader); // Move file data pointer + + // Meshes data processing + imesh = RL_MALLOC(iqmHeader->num_meshes*sizeof(IQMMesh)); + //fseek(iqmFile, iqmHeader->ofs_meshes, SEEK_SET); + //fread(imesh, sizeof(IQMMesh)*iqmHeader->num_meshes, 1, iqmFile); + memcpy(imesh, fileDataPtr + iqmHeader->ofs_meshes, iqmHeader->num_meshes*sizeof(IQMMesh)); + + model.meshCount = iqmHeader->num_meshes; + model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh)); + + model.materialCount = model.meshCount; + model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); + model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); + + char name[MESH_NAME_LENGTH] = { 0 }; + char material[MATERIAL_NAME_LENGTH] = { 0 }; + + for (int i = 0; i < model.meshCount; i++) + { + //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].name, SEEK_SET); + //fread(name, sizeof(char)*MESH_NAME_LENGTH, 1, iqmFile); + memcpy(name, fileDataPtr + iqmHeader->ofs_text + imesh[i].name, MESH_NAME_LENGTH*sizeof(char)); + + //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].material, SEEK_SET); + //fread(material, sizeof(char)*MATERIAL_NAME_LENGTH, 1, iqmFile); + memcpy(material, fileDataPtr + iqmHeader->ofs_text + imesh[i].material, MATERIAL_NAME_LENGTH*sizeof(char)); + + model.materials[i] = LoadMaterialDefault(); + + TRACELOG(LOG_DEBUG, "MODEL: [%s] mesh name (%s), material (%s)", fileName, name, material); + + model.meshes[i].vertexCount = imesh[i].num_vertexes; + + model.meshes[i].vertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex positions + model.meshes[i].normals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex normals + model.meshes[i].texcoords = RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float)); // Default vertex texcoords + + model.meshes[i].boneIds = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(unsigned char)); // Up-to 4 bones supported! + model.meshes[i].boneWeights = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported! + + model.meshes[i].triangleCount = imesh[i].num_triangles; + model.meshes[i].indices = RL_CALLOC(model.meshes[i].triangleCount*3, sizeof(unsigned short)); + + // Animated verted data, what we actually process for rendering + // NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning) + model.meshes[i].animVertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); + model.meshes[i].animNormals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); + } + + // Triangles data processing + tri = RL_MALLOC(iqmHeader->num_triangles*sizeof(IQMTriangle)); + //fseek(iqmFile, iqmHeader->ofs_triangles, SEEK_SET); + //fread(tri, iqmHeader->num_triangles*sizeof(IQMTriangle), 1, iqmFile); + memcpy(tri, fileDataPtr + iqmHeader->ofs_triangles, iqmHeader->num_triangles*sizeof(IQMTriangle)); + + for (int m = 0; m < model.meshCount; m++) + { + int tcounter = 0; + + for (unsigned int i = imesh[m].first_triangle; i < (imesh[m].first_triangle + imesh[m].num_triangles); i++) + { + // IQM triangles indexes are stored in counter-clockwise, but raylib processes the index in linear order, + // expecting they point to the counter-clockwise vertex triangle, so we need to reverse triangle indexes + // NOTE: raylib renders vertex data in counter-clockwise order (standard convention) by default + model.meshes[m].indices[tcounter + 2] = tri[i].vertex[0] - imesh[m].first_vertex; + model.meshes[m].indices[tcounter + 1] = tri[i].vertex[1] - imesh[m].first_vertex; + model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex; + tcounter += 3; + } + } + + // Vertex arrays data processing + va = RL_MALLOC(iqmHeader->num_vertexarrays*sizeof(IQMVertexArray)); + //fseek(iqmFile, iqmHeader->ofs_vertexarrays, SEEK_SET); + //fread(va, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray), 1, iqmFile); + memcpy(va, fileDataPtr + iqmHeader->ofs_vertexarrays, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray)); + + for (unsigned int i = 0; i < iqmHeader->num_vertexarrays; i++) + { + switch (va[i].type) + { + case IQM_POSITION: + { + vertex = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float)); + //fseek(iqmFile, va[i].offset, SEEK_SET); + //fread(vertex, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile); + memcpy(vertex, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float)); + + for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) + { + int vCounter = 0; + for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++) + { + model.meshes[m].vertices[vCounter] = vertex[i]; + model.meshes[m].animVertices[vCounter] = vertex[i]; + vCounter++; + } + } + } break; + case IQM_NORMAL: + { + normal = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float)); + //fseek(iqmFile, va[i].offset, SEEK_SET); + //fread(normal, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile); + memcpy(normal, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float)); + + for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) + { + int vCounter = 0; + for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++) + { + model.meshes[m].normals[vCounter] = normal[i]; + model.meshes[m].animNormals[vCounter] = normal[i]; + vCounter++; + } + } + } break; + case IQM_TEXCOORD: + { + text = RL_MALLOC(iqmHeader->num_vertexes*2*sizeof(float)); + //fseek(iqmFile, va[i].offset, SEEK_SET); + //fread(text, iqmHeader->num_vertexes*2*sizeof(float), 1, iqmFile); + memcpy(text, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*2*sizeof(float)); + + for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) + { + int vCounter = 0; + for (unsigned int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++) + { + model.meshes[m].texcoords[vCounter] = text[i]; + vCounter++; + } + } + } break; + case IQM_BLENDINDEXES: + { + blendi = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(char)); + //fseek(iqmFile, va[i].offset, SEEK_SET); + //fread(blendi, iqmHeader->num_vertexes*4*sizeof(char), 1, iqmFile); + memcpy(blendi, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(char)); + + for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) + { + int boneCounter = 0; + for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++) + { + model.meshes[m].boneIds[boneCounter] = blendi[i]; + boneCounter++; + } + } + } break; + case IQM_BLENDWEIGHTS: + { + blendw = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char)); + //fseek(iqmFile, va[i].offset, SEEK_SET); + //fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile); + memcpy(blendw, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char)); + + for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) + { + int boneCounter = 0; + for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++) + { + model.meshes[m].boneWeights[boneCounter] = blendw[i]/255.0f; + boneCounter++; + } + } + } break; + case IQM_COLOR: + { + color = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char)); + //fseek(iqmFile, va[i].offset, SEEK_SET); + //fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile); + memcpy(color, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char)); + + for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) + { + model.meshes[m].colors = RL_CALLOC(model.meshes[m].vertexCount*4, sizeof(unsigned char)); + + int vCounter = 0; + for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++) + { + model.meshes[m].colors[vCounter] = color[i]; + vCounter++; + } + } + } break; + } + } + + // Bones (joints) data processing + ijoint = RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint)); + //fseek(iqmFile, iqmHeader->ofs_joints, SEEK_SET); + //fread(ijoint, iqmHeader->num_joints*sizeof(IQMJoint), 1, iqmFile); + memcpy(ijoint, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint)); + + model.boneCount = iqmHeader->num_joints; + model.bones = RL_MALLOC(iqmHeader->num_joints*sizeof(BoneInfo)); + model.bindPose = RL_MALLOC(iqmHeader->num_joints*sizeof(Transform)); + + for (unsigned int i = 0; i < iqmHeader->num_joints; i++) + { + // Bones + model.bones[i].parent = ijoint[i].parent; + //fseek(iqmFile, iqmHeader->ofs_text + ijoint[i].name, SEEK_SET); + //fread(model.bones[i].name, BONE_NAME_LENGTH*sizeof(char), 1, iqmFile); + memcpy(model.bones[i].name, fileDataPtr + iqmHeader->ofs_text + ijoint[i].name, BONE_NAME_LENGTH*sizeof(char)); + + // Bind pose (base pose) + model.bindPose[i].translation.x = ijoint[i].translate[0]; + model.bindPose[i].translation.y = ijoint[i].translate[1]; + model.bindPose[i].translation.z = ijoint[i].translate[2]; + + model.bindPose[i].rotation.x = ijoint[i].rotate[0]; + model.bindPose[i].rotation.y = ijoint[i].rotate[1]; + model.bindPose[i].rotation.z = ijoint[i].rotate[2]; + model.bindPose[i].rotation.w = ijoint[i].rotate[3]; + + model.bindPose[i].scale.x = ijoint[i].scale[0]; + model.bindPose[i].scale.y = ijoint[i].scale[1]; + model.bindPose[i].scale.z = ijoint[i].scale[2]; + } + + // Build bind pose from parent joints + for (int i = 0; i < model.boneCount; i++) + { + if (model.bones[i].parent >= 0) + { + model.bindPose[i].rotation = QuaternionMultiply(model.bindPose[model.bones[i].parent].rotation, model.bindPose[i].rotation); + model.bindPose[i].translation = Vector3RotateByQuaternion(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].rotation); + model.bindPose[i].translation = Vector3Add(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].translation); + model.bindPose[i].scale = Vector3Multiply(model.bindPose[i].scale, model.bindPose[model.bones[i].parent].scale); + } + } + + RL_FREE(fileData); + + RL_FREE(imesh); + RL_FREE(tri); + RL_FREE(va); + RL_FREE(vertex); + RL_FREE(normal); + RL_FREE(text); + RL_FREE(blendi); + RL_FREE(blendw); + RL_FREE(ijoint); + + return model; +} + +// Load IQM animation data +static ModelAnimation *LoadModelAnimationsIQM(const char *fileName, unsigned int *animCount) +{ + #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number + #define IQM_VERSION 2 // only IQM version 2 supported + + unsigned int fileSize = 0; + unsigned char *fileData = LoadFileData(fileName, &fileSize); + unsigned char *fileDataPtr = fileData; + + typedef struct IQMHeader { + char magic[16]; + unsigned int version; + unsigned int filesize; + unsigned int flags; + unsigned int num_text, ofs_text; + unsigned int num_meshes, ofs_meshes; + unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays; + unsigned int num_triangles, ofs_triangles, ofs_adjacency; + unsigned int num_joints, ofs_joints; + unsigned int num_poses, ofs_poses; + unsigned int num_anims, ofs_anims; + unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds; + unsigned int num_comment, ofs_comment; + unsigned int num_extensions, ofs_extensions; + } IQMHeader; + + typedef struct IQMPose { + int parent; + unsigned int mask; + float channeloffset[10]; + float channelscale[10]; + } IQMPose; + + typedef struct IQMAnim { + unsigned int name; + unsigned int first_frame, num_frames; + float framerate; + unsigned int flags; + } IQMAnim; + + // In case file can not be read, return an empty model + if (fileDataPtr == NULL) return NULL; + + // Read IQM header + IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr; + + if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0) + { + TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName); + return NULL; + } + + if (iqmHeader->version != IQM_VERSION) + { + TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version); + return NULL; + } + + // Get bones data + IQMPose *poses = RL_MALLOC(iqmHeader->num_poses*sizeof(IQMPose)); + //fseek(iqmFile, iqmHeader->ofs_poses, SEEK_SET); + //fread(poses, iqmHeader->num_poses*sizeof(IQMPose), 1, iqmFile); + memcpy(poses, fileDataPtr + iqmHeader->ofs_poses, iqmHeader->num_poses*sizeof(IQMPose)); + + // Get animations data + *animCount = iqmHeader->num_anims; + IQMAnim *anim = RL_MALLOC(iqmHeader->num_anims*sizeof(IQMAnim)); + //fseek(iqmFile, iqmHeader->ofs_anims, SEEK_SET); + //fread(anim, iqmHeader->num_anims*sizeof(IQMAnim), 1, iqmFile); + memcpy(anim, fileDataPtr + iqmHeader->ofs_anims, iqmHeader->num_anims*sizeof(IQMAnim)); + + ModelAnimation *animations = RL_MALLOC(iqmHeader->num_anims*sizeof(ModelAnimation)); + + // frameposes + unsigned short *framedata = RL_MALLOC(iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short)); + //fseek(iqmFile, iqmHeader->ofs_frames, SEEK_SET); + //fread(framedata, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short), 1, iqmFile); + memcpy(framedata, fileDataPtr + iqmHeader->ofs_frames, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short)); + + for (unsigned int a = 0; a < iqmHeader->num_anims; a++) + { + animations[a].frameCount = anim[a].num_frames; + animations[a].boneCount = iqmHeader->num_poses; + animations[a].bones = RL_MALLOC(iqmHeader->num_poses*sizeof(BoneInfo)); + animations[a].framePoses = RL_MALLOC(anim[a].num_frames*sizeof(Transform *)); + // animations[a].framerate = anim.framerate; // TODO: Use framerate? + + for (unsigned int j = 0; j < iqmHeader->num_poses; j++) + { + strcpy(animations[a].bones[j].name, "ANIMJOINTNAME"); + animations[a].bones[j].parent = poses[j].parent; + } + + for (unsigned int j = 0; j < anim[a].num_frames; j++) animations[a].framePoses[j] = RL_MALLOC(iqmHeader->num_poses*sizeof(Transform)); + + int dcounter = anim[a].first_frame*iqmHeader->num_framechannels; + + for (unsigned int frame = 0; frame < anim[a].num_frames; frame++) + { + for (unsigned int i = 0; i < iqmHeader->num_poses; i++) + { + animations[a].framePoses[frame][i].translation.x = poses[i].channeloffset[0]; + + if (poses[i].mask & 0x01) + { + animations[a].framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0]; + dcounter++; + } + + animations[a].framePoses[frame][i].translation.y = poses[i].channeloffset[1]; + + if (poses[i].mask & 0x02) + { + animations[a].framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1]; + dcounter++; + } + + animations[a].framePoses[frame][i].translation.z = poses[i].channeloffset[2]; + + if (poses[i].mask & 0x04) + { + animations[a].framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2]; + dcounter++; + } + + animations[a].framePoses[frame][i].rotation.x = poses[i].channeloffset[3]; + + if (poses[i].mask & 0x08) + { + animations[a].framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3]; + dcounter++; + } + + animations[a].framePoses[frame][i].rotation.y = poses[i].channeloffset[4]; + + if (poses[i].mask & 0x10) + { + animations[a].framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4]; + dcounter++; + } + + animations[a].framePoses[frame][i].rotation.z = poses[i].channeloffset[5]; + + if (poses[i].mask & 0x20) + { + animations[a].framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5]; + dcounter++; + } + + animations[a].framePoses[frame][i].rotation.w = poses[i].channeloffset[6]; + + if (poses[i].mask & 0x40) + { + animations[a].framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6]; + dcounter++; + } + + animations[a].framePoses[frame][i].scale.x = poses[i].channeloffset[7]; + + if (poses[i].mask & 0x80) + { + animations[a].framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7]; + dcounter++; + } + + animations[a].framePoses[frame][i].scale.y = poses[i].channeloffset[8]; + + if (poses[i].mask & 0x100) + { + animations[a].framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8]; + dcounter++; + } + + animations[a].framePoses[frame][i].scale.z = poses[i].channeloffset[9]; + + if (poses[i].mask & 0x200) + { + animations[a].framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9]; + dcounter++; + } + + animations[a].framePoses[frame][i].rotation = QuaternionNormalize(animations[a].framePoses[frame][i].rotation); + } + } + + // Build frameposes + for (unsigned int frame = 0; frame < anim[a].num_frames; frame++) + { + for (int i = 0; i < animations[a].boneCount; i++) + { + if (animations[a].bones[i].parent >= 0) + { + animations[a].framePoses[frame][i].rotation = QuaternionMultiply(animations[a].framePoses[frame][animations[a].bones[i].parent].rotation, animations[a].framePoses[frame][i].rotation); + animations[a].framePoses[frame][i].translation = Vector3RotateByQuaternion(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].rotation); + animations[a].framePoses[frame][i].translation = Vector3Add(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].translation); + animations[a].framePoses[frame][i].scale = Vector3Multiply(animations[a].framePoses[frame][i].scale, animations[a].framePoses[frame][animations[a].bones[i].parent].scale); + } + } + } + } + + RL_FREE(fileData); + + RL_FREE(framedata); + RL_FREE(poses); + RL_FREE(anim); + + return animations; +} + +#endif + +#if defined(SUPPORT_FILEFORMAT_GLTF) +// Load image from different glTF provided methods (uri, path, buffer_view) +static Image LoadImageFromCgltfImage(cgltf_image *cgltfImage, const char *texPath) +{ + Image image = { 0 }; + + if (cgltfImage->uri != NULL) // Check if image data is provided as a uri (base64 or path) + { + if ((strlen(cgltfImage->uri) > 5) && + (cgltfImage->uri[0] == 'd') && + (cgltfImage->uri[1] == 'a') && + (cgltfImage->uri[2] == 't') && + (cgltfImage->uri[3] == 'a') && + (cgltfImage->uri[4] == ':')) // Check if image is provided as base64 text data + { + // Data URI Format: data:<mediatype>;base64,<data> + + // Find the comma + int i = 0; + while ((cgltfImage->uri[i] != ',') && (cgltfImage->uri[i] != 0)) i++; + + if (cgltfImage->uri[i] == 0) TRACELOG(LOG_WARNING, "IMAGE: glTF data URI is not a valid image"); + else + { + int base64Size = (int)strlen(cgltfImage->uri + i + 1); + int outSize = 3*(base64Size/4); // TODO: Consider padding (-numberOfPaddingCharacters) + void *data = NULL; + + cgltf_options options = { 0 }; + cgltf_result result = cgltf_load_buffer_base64(&options, outSize, cgltfImage->uri + i + 1, &data); + + if (result == cgltf_result_success) + { + image = LoadImageFromMemory(".png", (unsigned char *)data, outSize); + cgltf_free((cgltf_data*)data); + } + } + } + else // Check if image is provided as image path + { + image = LoadImage(TextFormat("%s/%s", texPath, cgltfImage->uri)); + } + } + else if (cgltfImage->buffer_view->buffer->data != NULL) // Check if image is provided as data buffer + { + unsigned char *data = RL_MALLOC(cgltfImage->buffer_view->size); + int offset = (int)cgltfImage->buffer_view->offset; + int stride = (int)cgltfImage->buffer_view->stride? (int)cgltfImage->buffer_view->stride : 1; + + // Copy buffer data to memory for loading + for (unsigned int i = 0; i < cgltfImage->buffer_view->size; i++) + { + data[i] = ((unsigned char *)cgltfImage->buffer_view->buffer->data)[offset]; + offset += stride; + } + + // Check mime_type for image: (cgltfImage->mime_type == "image/png") + // NOTE: Detected that some models define mime_type as "image\\/png" + if ((strcmp(cgltfImage->mime_type, "image\\/png") == 0) || + (strcmp(cgltfImage->mime_type, "image/png") == 0)) image = LoadImageFromMemory(".png", data, (int)cgltfImage->buffer_view->size); + else if ((strcmp(cgltfImage->mime_type, "image\\/jpeg") == 0) || + (strcmp(cgltfImage->mime_type, "image/jpeg") == 0)) image = LoadImageFromMemory(".jpg", data, (int)cgltfImage->buffer_view->size); + else TRACELOG(LOG_WARNING, "MODEL: glTF image data MIME type not recognized", TextFormat("%s/%s", texPath, cgltfImage->uri)); + + RL_FREE(data); + } + + return image; +} + +// Load glTF file into model struct, .gltf and .glb supported +static Model LoadGLTF(const char *fileName) +{ + /********************************************************************************************* + + Function implemented by Wilhem Barbier(@wbrbr), with modifications by Tyler Bezera(@gamerfiend) + Reviewed by Ramon Santamaria (@raysan5) + + FEATURES: + - Supports .gltf and .glb files + - Supports embedded (base64) or external textures + - Supports PBR metallic/roughness flow, loads material textures, values and colors + PBR specular/glossiness flow and extended texture flows not supported + - Supports multiple meshes per model (every primitives is loaded as a separate mesh) + + RESTRICTIONS: + - Only triangle meshes supported + - Vertex attibute types and formats supported: + > Vertices (position): vec3: float + > Normals: vec3: float + > Texcoords: vec2: float + > Colors: vec4: u8, u16, f32 (normalized) + > Indices: u16, u32 (truncated to u16) + - Node hierarchies or transforms not supported + + ***********************************************************************************************/ + + // Macro to simplify attributes loading code + #define LOAD_ATTRIBUTE(accesor, numComp, dataType, dstPtr) \ + { \ + int n = 0; \ + dataType *buffer = (dataType *)accesor->buffer_view->buffer->data + accesor->buffer_view->offset/sizeof(dataType) + accesor->offset/sizeof(dataType); \ + for (unsigned int k = 0; k < accesor->count; k++) \ + {\ + for (int l = 0; l < numComp; l++) \ + {\ + dstPtr[numComp*k + l] = buffer[n + l];\ + }\ + n += (int)(accesor->stride/sizeof(dataType));\ + }\ + } + + Model model = { 0 }; + + // glTF file loading + unsigned int dataSize = 0; + unsigned char *fileData = LoadFileData(fileName, &dataSize); + + if (fileData == NULL) return model; + + // glTF data loading + cgltf_options options = { 0 }; + cgltf_data *data = NULL; + cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data); + + if (result == cgltf_result_success) + { + if (data->file_type == cgltf_file_type_glb) TRACELOG(LOG_INFO, "MODEL: [%s] Model basic data (glb) loaded successfully", fileName); + else if (data->file_type == cgltf_file_type_gltf) TRACELOG(LOG_INFO, "MODEL: [%s] Model basic data (glTF) loaded successfully", fileName); + else TRACELOG(LOG_WARNING, "MODEL: [%s] Model format not recognized", fileName); + + TRACELOG(LOG_INFO, " > Meshes count: %i", data->meshes_count); + TRACELOG(LOG_INFO, " > Materials count: %i (+1 default)", data->materials_count); + TRACELOG(LOG_DEBUG, " > Buffers count: %i", data->buffers_count); + TRACELOG(LOG_DEBUG, " > Images count: %i", data->images_count); + TRACELOG(LOG_DEBUG, " > Textures count: %i", data->textures_count); + + // Force reading data buffers (fills buffer_view->buffer->data) + // NOTE: If an uri is defined to base64 data or external path, it's automatically loaded -> TODO: Verify this assumption + result = cgltf_load_buffers(&options, data, fileName); + if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load mesh/material buffers", fileName); + + int primitivesCount = 0; + // NOTE: We will load every primitive in the glTF as a separate raylib mesh + for (unsigned int i = 0; i < data->meshes_count; i++) primitivesCount += (int)data->meshes[i].primitives_count; + + // Load our model data: meshes and materials + model.meshCount = primitivesCount; + model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh)); + for (int i = 0; i < model.meshCount; i++) model.meshes[i].vboId = (unsigned int*)RL_CALLOC(MAX_MESH_VERTEX_BUFFERS, sizeof(unsigned int)); + + // NOTE: We keep an extra slot for default material, in case some mesh requires it + model.materialCount = (int)data->materials_count + 1; + model.materials = RL_CALLOC(model.materialCount, sizeof(Material)); + model.materials[0] = LoadMaterialDefault(); // Load default material (index: 0) + + // Load mesh-material indices, by default all meshes are mapped to material index: 0 + model.meshMaterial = RL_CALLOC(model.meshCount, sizeof(int)); + + // Load materials data + //---------------------------------------------------------------------------------------------------- + for (unsigned int i = 0, j = 1; i < data->materials_count; i++, j++) + { + model.materials[j] = LoadMaterialDefault(); + const char *texPath = GetDirectoryPath(fileName); + + // Check glTF material flow: PBR metallic/roughness flow + // NOTE: Alternatively, materials can follow PBR specular/glossiness flow + if (data->materials[i].has_pbr_metallic_roughness) + { + // Load base color texture (albedo) + if (data->materials[i].pbr_metallic_roughness.base_color_texture.texture) + { + Image imAlbedo = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.base_color_texture.texture->image, texPath); + if (imAlbedo.data != NULL) + { + model.materials[j].maps[MATERIAL_MAP_ALBEDO].texture = LoadTextureFromImage(imAlbedo); + UnloadImage(imAlbedo); + } + } + // Load base color factor (tint) + model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0]*255); + model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1]*255); + model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2]*255); + model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3]*255); + + // Load metallic/roughness texture + if (data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture) + { + Image imMetallicRoughness = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture->image, texPath); + if (imMetallicRoughness.data != NULL) + { + model.materials[j].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(imMetallicRoughness); + UnloadImage(imMetallicRoughness); + } + + // Load metallic/roughness material properties + float roughness = data->materials[i].pbr_metallic_roughness.roughness_factor; + model.materials[j].maps[MATERIAL_MAP_ROUGHNESS].value = roughness; + + float metallic = data->materials[i].pbr_metallic_roughness.metallic_factor; + model.materials[j].maps[MATERIAL_MAP_METALNESS].value = metallic; + } + + // Load normal texture + if (data->materials[i].normal_texture.texture) + { + Image imNormal = LoadImageFromCgltfImage(data->materials[i].normal_texture.texture->image, texPath); + if (imNormal.data != NULL) + { + model.materials[j].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(imNormal); + UnloadImage(imNormal); + } + } + + // Load ambient occlusion texture + if (data->materials[i].occlusion_texture.texture) + { + Image imOcclusion = LoadImageFromCgltfImage(data->materials[i].occlusion_texture.texture->image, texPath); + if (imOcclusion.data != NULL) + { + model.materials[j].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(imOcclusion); + UnloadImage(imOcclusion); + } + } + + // Load emissive texture + if (data->materials[i].emissive_texture.texture) + { + Image imEmissive = LoadImageFromCgltfImage(data->materials[i].emissive_texture.texture->image, texPath); + if (imEmissive.data != NULL) + { + model.materials[j].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(imEmissive); + UnloadImage(imEmissive); + } + + // Load emissive color factor + model.materials[j].maps[MATERIAL_MAP_EMISSION].color.r = (unsigned char)(data->materials[i].emissive_factor[0]*255); + model.materials[j].maps[MATERIAL_MAP_EMISSION].color.g = (unsigned char)(data->materials[i].emissive_factor[1]*255); + model.materials[j].maps[MATERIAL_MAP_EMISSION].color.b = (unsigned char)(data->materials[i].emissive_factor[2]*255); + model.materials[j].maps[MATERIAL_MAP_EMISSION].color.a = 255; + } + } + + // Other possible materials not supported by raylib pipeline: + // has_clearcoat, has_transmission, has_volume, has_ior, has specular, has_sheen + } + + // Load meshes data + //---------------------------------------------------------------------------------------------------- + for (unsigned int i = 0, meshIndex = 0; i < data->meshes_count; i++) + { + // NOTE: meshIndex accumulates primitives + + for (unsigned int p = 0; p < data->meshes[i].primitives_count; p++) + { + // NOTE: We only support primitives defined by triangles + // Other alternatives: points, lines, line_strip, triangle_strip + if (data->meshes[i].primitives[p].type != cgltf_primitive_type_triangles) continue; + + // NOTE: Attributes data could be provided in several data formats (8, 8u, 16u, 32...), + // Only some formats for each attribute type are supported, read info at the top of this function! + + for (unsigned int j = 0; j < data->meshes[i].primitives[p].attributes_count; j++) + { + // Check the different attributes for every pimitive + if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_position) // POSITION + { + cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data; + + // WARNING: SPECS: POSITION accessor MUST have its min and max properties defined. + + if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec3)) + { + // Init raylib mesh vertices to copy glTF attribute data + model.meshes[meshIndex].vertexCount = (int)attribute->count; + model.meshes[meshIndex].vertices = RL_MALLOC(attribute->count*3*sizeof(float)); + + // Load 3 components of float data type into mesh.vertices + LOAD_ATTRIBUTE(attribute, 3, float, model.meshes[meshIndex].vertices) + } + else TRACELOG(LOG_WARNING, "MODEL: [%s] Vertices attribute data format not supported, use vec3 float", fileName); + } + else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_normal) // NORMAL + { + cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data; + + if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec3)) + { + // Init raylib mesh normals to copy glTF attribute data + model.meshes[meshIndex].normals = RL_MALLOC(attribute->count*3*sizeof(float)); + + // Load 3 components of float data type into mesh.normals + LOAD_ATTRIBUTE(attribute, 3, float, model.meshes[meshIndex].normals) + } + else TRACELOG(LOG_WARNING, "MODEL: [%s] Normal attribute data format not supported, use vec3 float", fileName); + } + else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_tangent) // TANGENT + { + cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data; + + if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec4)) + { + // Init raylib mesh tangent to copy glTF attribute data + model.meshes[meshIndex].tangents = RL_MALLOC(attribute->count*4*sizeof(float)); + + // Load 4 components of float data type into mesh.tangents + LOAD_ATTRIBUTE(attribute, 4, float, model.meshes[meshIndex].tangents) + } + else TRACELOG(LOG_WARNING, "MODEL: [%s] Tangent attribute data format not supported, use vec4 float", fileName); + } + else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_texcoord) // TEXCOORD_0 + { + // TODO: Support additional texture coordinates: TEXCOORD_1 -> mesh.texcoords2 + + cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data; + + if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec2)) + { + // Init raylib mesh texcoords to copy glTF attribute data + model.meshes[meshIndex].texcoords = RL_MALLOC(attribute->count*2*sizeof(float)); + + // Load 3 components of float data type into mesh.texcoords + LOAD_ATTRIBUTE(attribute, 2, float, model.meshes[meshIndex].texcoords) + } + else TRACELOG(LOG_WARNING, "MODEL: [%s] Texcoords attribute data format not supported, use vec2 float", fileName); + } + else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_color) // COLOR_0 + { + cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data; + + // WARNING: SPECS: All components of each COLOR_n accessor element MUST be clamped to [0.0, 1.0] range. + + if ((attribute->component_type == cgltf_component_type_r_8u) && (attribute->type == cgltf_type_vec4)) + { + // Init raylib mesh color to copy glTF attribute data + model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char)); + + // Load 4 components of unsigned char data type into mesh.colors + LOAD_ATTRIBUTE(attribute, 4, unsigned char, model.meshes[meshIndex].colors) + } + else if ((attribute->component_type == cgltf_component_type_r_16u) && (attribute->type == cgltf_type_vec4)) + { + // Init raylib mesh color to copy glTF attribute data + model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char)); + + // Load data into a temp buffer to be converted to raylib data type + unsigned short *temp = RL_MALLOC(attribute->count*4*sizeof(unsigned short)); + LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp); + + // Convert data to raylib color data type (4 bytes) + for (int c = 0; c < attribute->count*4; c++) model.meshes[meshIndex].colors[c] = (unsigned char)(((float)temp[c]/65535.0f)*255.0f); + + RL_FREE(temp); + } + else if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec4)) + { + // Init raylib mesh color to copy glTF attribute data + model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char)); + + // Load data into a temp buffer to be converted to raylib data type + float *temp = RL_MALLOC(attribute->count*4*sizeof(float)); + LOAD_ATTRIBUTE(attribute, 4, float, temp); + + // Convert data to raylib color data type (4 bytes), we expect the color data normalized + for (int c = 0; c < attribute->count*4; c++) model.meshes[meshIndex].colors[c] = (unsigned char)(temp[c]*255.0f); + + RL_FREE(temp); + } + else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName); + } + + // NOTE: Attributes related to animations are processed separately + } + + // Load primitive indices data (if provided) + if (data->meshes[i].primitives[p].indices != NULL) + { + cgltf_accessor *attribute = data->meshes[i].primitives[p].indices; + + model.meshes[meshIndex].triangleCount = (int)attribute->count/3; + + if (attribute->component_type == cgltf_component_type_r_16u) + { + // Init raylib mesh indices to copy glTF attribute data + model.meshes[meshIndex].indices = RL_MALLOC(attribute->count*sizeof(unsigned short)); + + // Load unsigned short data type into mesh.indices + LOAD_ATTRIBUTE(attribute, 1, unsigned short, model.meshes[meshIndex].indices) + } + else if (attribute->component_type == cgltf_component_type_r_32u) + { + // Init raylib mesh indices to copy glTF attribute data + model.meshes[meshIndex].indices = RL_MALLOC(attribute->count*sizeof(unsigned short)); + + // Load data into a temp buffer to be converted to raylib data type + unsigned int *temp = RL_MALLOC(attribute->count*sizeof(unsigned int)); + LOAD_ATTRIBUTE(attribute, 1, unsigned int, temp); + + // Convert data to raylib indices data type (unsigned short) + for (int d = 0; d < attribute->count; d++) model.meshes[meshIndex].indices[d] = (unsigned short)temp[d]; + + TRACELOG(LOG_WARNING, "MODEL: [%s] Indices data converted from u32 to u16, possible loss of data", fileName); + + RL_FREE(temp); + } + else TRACELOG(LOG_WARNING, "MODEL: [%s] Indices data format not supported, use u16", fileName); + } + else model.meshes[meshIndex].triangleCount = model.meshes[meshIndex].vertexCount/3; // Unindexed mesh + + // Assign to the primitive mesh the corresponding material index + // NOTE: If no material defined, mesh uses the already assigned default material (index: 0) + for (int m = 0; m < data->materials_count; m++) + { + // The primitive actually keeps the pointer to the corresponding material, + // raylib instead assigns to the mesh the by its index, as loaded in model.materials array + // To get the index, we check if material pointers match and we assign the corresponding index, + // skipping index 0, the default material + if (&data->materials[m] == data->meshes[i].primitives[p].material) + { + model.meshMaterial[meshIndex] = m + 1; + break; + } + } + + meshIndex++; // Move to next mesh + } + } + +/* + // TODO: Load glTF meshes animation data + // REF: https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#skins + // REF: https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#skinned-mesh-attributes + //---------------------------------------------------------------------------------------------------- + for (unsigned int i = 0, meshIndex = 0; i < data->meshes_count; i++) + { + for (unsigned int p = 0; p < data->meshes[i].primitives_count; p++) + { + // NOTE: We only support primitives defined by triangles + if (data->meshes[i].primitives[p].type != cgltf_primitive_type_triangles) continue; + + for (unsigned int j = 0; j < data->meshes[i].primitives[p].attributes_count; j++) + { + // NOTE: JOINTS_1 + WEIGHT_1 will be used for +4 joints influencing a vertex -> Not supported by raylib + + if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_joints) // JOINTS_n (vec4: 4 bones max per vertex / u8, u16) + { + cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data; + + if ((attribute->component_type == cgltf_component_type_r_8u) && (attribute->type == cgltf_type_vec4)) + { + // Init raylib mesh bone ids to copy glTF attribute data + model.meshes[meshIndex].boneIds = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned char)); + + // Load 4 components of unsigned char data type into mesh.boneIds + LOAD_ATTRIBUTE(attribute, 4, unsigned char, model.meshes[meshIndex].boneIds) + } + else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format not supported, use vec4 u8", fileName); + } + else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_weights) // WEIGHTS_n (vec4 / u8, u16, f32) + { + cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data; + + if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec4)) + { + // Init raylib mesh bone weight to copy glTF attribute data + model.meshes[meshIndex].boneWeights = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float)); + + // Load 4 components of float data type into mesh.boneWeights + LOAD_ATTRIBUTE(attribute, 4, float, model.meshes[meshIndex].boneWeights) + } + else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint weight attribute data format not supported, use vec4 float", fileName); + } + } + + meshIndex++; // Move to next mesh + } + } +*/ + // Free all cgltf loaded data + cgltf_free(data); + } + else TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName); + + // WARNING: cgltf requires the file pointer available while reading data + UnloadFileData(fileData); + + return model; +} +#endif + +#if defined(SUPPORT_FILEFORMAT_VOX) +// Load VOX (MagicaVoxel) mesh data +static Model LoadVOX(const char *fileName) +{ + Model model = { 0 }; + + int nbvertices = 0; + int meshescount = 0; + unsigned int fileSize = 0; + unsigned char *fileData = NULL; + + // Read vox file into buffer + fileData = LoadFileData(fileName, &fileSize); + if (fileData == 0) + { + TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load VOX file", fileName); + return model; + } + + // Read and build voxarray description + VoxArray3D voxarray = { 0 }; + int ret = Vox_LoadFromMemory(fileData, fileSize, &voxarray); + + if (ret != VOX_SUCCESS) + { + // Error + UnloadFileData(fileData); + + TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load VOX data", fileName); + return model; + } + else + { + // Success: Compute meshes count + nbvertices = voxarray.vertices.used; + meshescount = 1 + (nbvertices/65536); + + TRACELOG(LOG_INFO, "MODEL: [%s] VOX data loaded successfully : %i vertices/%i meshes", fileName, nbvertices, meshescount); + } + + // Build models from meshes + model.transform = MatrixIdentity(); + + model.meshCount = meshescount; + model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh)); + + model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); + + model.materialCount = 1; + model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); + model.materials[0] = LoadMaterialDefault(); + + // Init model meshes + int verticesRemain = voxarray.vertices.used; + int verticesMax = 65532; // 5461 voxels x 12 vertices per voxel -> 65532 (must be inf 65536) + + // 6*4 = 12 vertices per voxel + Vector3 *pvertices = (Vector3 *)voxarray.vertices.array; + Color *pcolors = (Color *)voxarray.colors.array; + + unsigned short *pindices = voxarray.indices.array; // 5461*6*6 = 196596 indices max per mesh + + int size = 0; + + for (int i = 0; i < meshescount; i++) + { + Mesh *pmesh = &model.meshes[i]; + memset(pmesh, 0, sizeof(Mesh)); + + // Copy vertices + pmesh->vertexCount = (int)fmin(verticesMax, verticesRemain); + + size = pmesh->vertexCount*sizeof(float)*3; + pmesh->vertices = RL_MALLOC(size); + memcpy(pmesh->vertices, pvertices, size); + + // Copy indices + // TODO: Compute globals indices array + size = voxarray.indices.used*sizeof(unsigned short); + pmesh->indices = RL_MALLOC(size); + memcpy(pmesh->indices, pindices, size); + + pmesh->triangleCount = (pmesh->vertexCount/4)*2; + + // Copy colors + size = pmesh->vertexCount*sizeof(Color); + pmesh->colors = RL_MALLOC(size); + memcpy(pmesh->colors, pcolors, size); + + // First material index + model.meshMaterial[i] = 0; + + verticesRemain -= verticesMax; + pvertices += verticesMax; + pcolors += verticesMax; + } + + // Free buffers + Vox_FreeArrays(&voxarray); + UnloadFileData(fileData); + + return model; +} +#endif + +#endif // SUPPORT_MODULE_RMODELS |