aboutsummaryrefslogtreecommitdiffstats
path: root/raylib/src/raymath.h
diff options
context:
space:
mode:
Diffstat (limited to 'raylib/src/raymath.h')
-rw-r--r--raylib/src/raymath.h1888
1 files changed, 1888 insertions, 0 deletions
diff --git a/raylib/src/raymath.h b/raylib/src/raymath.h
new file mode 100644
index 0000000..d617fdc
--- /dev/null
+++ b/raylib/src/raymath.h
@@ -0,0 +1,1888 @@
+/**********************************************************************************************
+*
+* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
+*
+* CONFIGURATION:
+*
+* #define RAYMATH_IMPLEMENTATION
+* Generates the implementation of the library into the included file.
+* If not defined, the library is in header only mode and can be included in other headers
+* or source files without problems. But only ONE file should hold the implementation.
+*
+* #define RAYMATH_STATIC_INLINE
+* Define static inline functions code, so #include header suffices for use.
+* This may use up lots of memory.
+*
+* CONVENTIONS:
+*
+* - Functions are always self-contained, no function use another raymath function inside,
+* required code is directly re-implemented inside
+* - Functions input parameters are always received by value (2 unavoidable exceptions)
+* - Functions use always a "result" anmed variable for return
+* - Functions are always defined inline
+* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
+*
+*
+* LICENSE: zlib/libpng
+*
+* Copyright (c) 2015-2022 Ramon Santamaria (@raysan5)
+*
+* This software is provided "as-is", without any express or implied warranty. In no event
+* will the authors be held liable for any damages arising from the use of this software.
+*
+* Permission is granted to anyone to use this software for any purpose, including commercial
+* applications, and to alter it and redistribute it freely, subject to the following restrictions:
+*
+* 1. The origin of this software must not be misrepresented; you must not claim that you
+* wrote the original software. If you use this software in a product, an acknowledgment
+* in the product documentation would be appreciated but is not required.
+*
+* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
+* as being the original software.
+*
+* 3. This notice may not be removed or altered from any source distribution.
+*
+**********************************************************************************************/
+
+#ifndef RAYMATH_H
+#define RAYMATH_H
+
+#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_STATIC_INLINE)
+ #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_STATIC_INLINE is contradictory"
+#endif
+
+// Function specifiers definition
+#if defined(RAYMATH_IMPLEMENTATION)
+ #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
+ #define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll).
+ #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
+ #define RMAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll)
+ #else
+ #define RMAPI extern inline // Provide external definition
+ #endif
+#elif defined(RAYMATH_STATIC_INLINE)
+ #define RMAPI static inline // Functions may be inlined, no external out-of-line definition
+#else
+ #if defined(__TINYC__)
+ #define RMAPI static inline // plain inline not supported by tinycc (See issue #435)
+ #else
+ #define RMAPI inline // Functions may be inlined or external definition used
+ #endif
+#endif
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+#ifndef PI
+ #define PI 3.14159265358979323846f
+#endif
+
+#ifndef DEG2RAD
+ #define DEG2RAD (PI/180.0f)
+#endif
+
+#ifndef RAD2DEG
+ #define RAD2DEG (180.0f/PI)
+#endif
+
+// Get float vector for Matrix
+#ifndef MatrixToFloat
+ #define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
+#endif
+
+// Get float vector for Vector3
+#ifndef Vector3ToFloat
+ #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
+#endif
+
+//----------------------------------------------------------------------------------
+// Types and Structures Definition
+//----------------------------------------------------------------------------------
+#if !defined(RL_VECTOR2_TYPE)
+// Vector2 type
+typedef struct Vector2 {
+ float x;
+ float y;
+} Vector2;
+#define RL_VECTOR2_TYPE
+#endif
+
+#if !defined(RL_VECTOR3_TYPE)
+// Vector3 type
+typedef struct Vector3 {
+ float x;
+ float y;
+ float z;
+} Vector3;
+#define RL_VECTOR3_TYPE
+#endif
+
+#if !defined(RL_VECTOR4_TYPE)
+// Vector4 type
+typedef struct Vector4 {
+ float x;
+ float y;
+ float z;
+ float w;
+} Vector4;
+#define RL_VECTOR4_TYPE
+#endif
+
+#if !defined(RL_QUATERNION_TYPE)
+// Quaternion type
+typedef Vector4 Quaternion;
+#define RL_QUATERNION_TYPE
+#endif
+
+#if !defined(RL_MATRIX_TYPE)
+// Matrix type (OpenGL style 4x4 - right handed, column major)
+typedef struct Matrix {
+ float m0, m4, m8, m12; // Matrix first row (4 components)
+ float m1, m5, m9, m13; // Matrix second row (4 components)
+ float m2, m6, m10, m14; // Matrix third row (4 components)
+ float m3, m7, m11, m15; // Matrix fourth row (4 components)
+} Matrix;
+#define RL_MATRIX_TYPE
+#endif
+
+// NOTE: Helper types to be used instead of array return types for *ToFloat functions
+typedef struct float3 {
+ float v[3];
+} float3;
+
+typedef struct float16 {
+ float v[16];
+} float16;
+
+#include <math.h> // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), fminf(), fmaxf(), fabs()
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Utils math
+//----------------------------------------------------------------------------------
+
+// Clamp float value
+RMAPI float Clamp(float value, float min, float max)
+{
+ float result = (value < min)? min : value;
+
+ if (result > max) result = max;
+
+ return result;
+}
+
+// Calculate linear interpolation between two floats
+RMAPI float Lerp(float start, float end, float amount)
+{
+ float result = start + amount*(end - start);
+
+ return result;
+}
+
+// Normalize input value within input range
+RMAPI float Normalize(float value, float start, float end)
+{
+ float result = (value - start)/(end - start);
+
+ return result;
+}
+
+// Remap input value within input range to output range
+RMAPI float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd)
+{
+ float result = (value - inputStart)/(inputEnd - inputStart)*(outputEnd - outputStart) + outputStart;
+
+ return result;
+}
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Vector2 math
+//----------------------------------------------------------------------------------
+
+// Vector with components value 0.0f
+RMAPI Vector2 Vector2Zero(void)
+{
+ Vector2 result = { 0.0f, 0.0f };
+
+ return result;
+}
+
+// Vector with components value 1.0f
+RMAPI Vector2 Vector2One(void)
+{
+ Vector2 result = { 1.0f, 1.0f };
+
+ return result;
+}
+
+// Add two vectors (v1 + v2)
+RMAPI Vector2 Vector2Add(Vector2 v1, Vector2 v2)
+{
+ Vector2 result = { v1.x + v2.x, v1.y + v2.y };
+
+ return result;
+}
+
+// Add vector and float value
+RMAPI Vector2 Vector2AddValue(Vector2 v, float add)
+{
+ Vector2 result = { v.x + add, v.y + add };
+
+ return result;
+}
+
+// Subtract two vectors (v1 - v2)
+RMAPI Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
+{
+ Vector2 result = { v1.x - v2.x, v1.y - v2.y };
+
+ return result;
+}
+
+// Subtract vector by float value
+RMAPI Vector2 Vector2SubtractValue(Vector2 v, float sub)
+{
+ Vector2 result = { v.x - sub, v.y - sub };
+
+ return result;
+}
+
+// Calculate vector length
+RMAPI float Vector2Length(Vector2 v)
+{
+ float result = sqrtf((v.x*v.x) + (v.y*v.y));
+
+ return result;
+}
+
+// Calculate vector square length
+RMAPI float Vector2LengthSqr(Vector2 v)
+{
+ float result = (v.x*v.x) + (v.y*v.y);
+
+ return result;
+}
+
+// Calculate two vectors dot product
+RMAPI float Vector2DotProduct(Vector2 v1, Vector2 v2)
+{
+ float result = (v1.x*v2.x + v1.y*v2.y);
+
+ return result;
+}
+
+// Calculate distance between two vectors
+RMAPI float Vector2Distance(Vector2 v1, Vector2 v2)
+{
+ float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
+
+ return result;
+}
+
+// Calculate square distance between two vectors
+RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2)
+{
+ float result = ((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
+
+ return result;
+}
+
+// Calculate angle from two vectors
+RMAPI float Vector2Angle(Vector2 v1, Vector2 v2)
+{
+ float result = atan2f(v2.y, v2.x) - atan2f(v1.y, v1.x);
+
+ return result;
+}
+
+// Scale vector (multiply by value)
+RMAPI Vector2 Vector2Scale(Vector2 v, float scale)
+{
+ Vector2 result = { v.x*scale, v.y*scale };
+
+ return result;
+}
+
+// Multiply vector by vector
+RMAPI Vector2 Vector2Multiply(Vector2 v1, Vector2 v2)
+{
+ Vector2 result = { v1.x*v2.x, v1.y*v2.y };
+
+ return result;
+}
+
+// Negate vector
+RMAPI Vector2 Vector2Negate(Vector2 v)
+{
+ Vector2 result = { -v.x, -v.y };
+
+ return result;
+}
+
+// Divide vector by vector
+RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2)
+{
+ Vector2 result = { v1.x/v2.x, v1.y/v2.y };
+
+ return result;
+}
+
+// Normalize provided vector
+RMAPI Vector2 Vector2Normalize(Vector2 v)
+{
+ Vector2 result = { 0 };
+ float length = sqrtf((v.x*v.x) + (v.y*v.y));
+
+ if (length > 0)
+ {
+ float ilength = 1.0f/length;
+ result.x = v.x*ilength;
+ result.y = v.y*ilength;
+ }
+
+ return result;
+}
+
+// Transforms a Vector2 by a given Matrix
+RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat)
+{
+ Vector2 result = { 0 };
+
+ float x = v.x;
+ float y = v.y;
+ float z = 0;
+
+ result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
+ result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
+
+ return result;
+}
+
+// Calculate linear interpolation between two vectors
+RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
+{
+ Vector2 result = { 0 };
+
+ result.x = v1.x + amount*(v2.x - v1.x);
+ result.y = v1.y + amount*(v2.y - v1.y);
+
+ return result;
+}
+
+// Calculate reflected vector to normal
+RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal)
+{
+ Vector2 result = { 0 };
+
+ float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product
+
+ result.x = v.x - (2.0f*normal.x)*dotProduct;
+ result.y = v.y - (2.0f*normal.y)*dotProduct;
+
+ return result;
+}
+
+// Rotate vector by angle
+RMAPI Vector2 Vector2Rotate(Vector2 v, float angle)
+{
+ Vector2 result = { 0 };
+
+ float cosres = cosf(angle);
+ float sinres = sinf(angle);
+
+ result.x = v.x*cosres - v.y*sinres;
+ result.y = v.x*sinres + v.y*cosres;
+
+ return result;
+}
+
+// Move Vector towards target
+RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance)
+{
+ Vector2 result = { 0 };
+
+ float dx = target.x - v.x;
+ float dy = target.y - v.y;
+ float value = (dx*dx) + (dy*dy);
+
+ if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
+
+ float dist = sqrtf(value);
+
+ result.x = v.x + dx/dist*maxDistance;
+ result.y = v.y + dy/dist*maxDistance;
+
+ return result;
+}
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Vector3 math
+//----------------------------------------------------------------------------------
+
+// Vector with components value 0.0f
+RMAPI Vector3 Vector3Zero(void)
+{
+ Vector3 result = { 0.0f, 0.0f, 0.0f };
+
+ return result;
+}
+
+// Vector with components value 1.0f
+RMAPI Vector3 Vector3One(void)
+{
+ Vector3 result = { 1.0f, 1.0f, 1.0f };
+
+ return result;
+}
+
+// Add two vectors
+RMAPI Vector3 Vector3Add(Vector3 v1, Vector3 v2)
+{
+ Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
+
+ return result;
+}
+
+// Add vector and float value
+RMAPI Vector3 Vector3AddValue(Vector3 v, float add)
+{
+ Vector3 result = { v.x + add, v.y + add, v.z + add };
+
+ return result;
+}
+
+// Subtract two vectors
+RMAPI Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
+{
+ Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
+
+ return result;
+}
+
+// Subtract vector by float value
+RMAPI Vector3 Vector3SubtractValue(Vector3 v, float sub)
+{
+ Vector3 result = { v.x - sub, v.y - sub, v.z - sub };
+
+ return result;
+}
+
+// Multiply vector by scalar
+RMAPI Vector3 Vector3Scale(Vector3 v, float scalar)
+{
+ Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
+
+ return result;
+}
+
+// Multiply vector by vector
+RMAPI Vector3 Vector3Multiply(Vector3 v1, Vector3 v2)
+{
+ Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
+
+ return result;
+}
+
+// Calculate two vectors cross product
+RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
+{
+ Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
+
+ return result;
+}
+
+// Calculate one vector perpendicular vector
+RMAPI Vector3 Vector3Perpendicular(Vector3 v)
+{
+ Vector3 result = { 0 };
+
+ float min = (float) fabs(v.x);
+ Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
+
+ if (fabs(v.y) < min)
+ {
+ min = (float) fabs(v.y);
+ Vector3 tmp = {0.0f, 1.0f, 0.0f};
+ cardinalAxis = tmp;
+ }
+
+ if (fabs(v.z) < min)
+ {
+ Vector3 tmp = {0.0f, 0.0f, 1.0f};
+ cardinalAxis = tmp;
+ }
+
+ // Cross product between vectors
+ result.x = v.y*cardinalAxis.z - v.z*cardinalAxis.y;
+ result.y = v.z*cardinalAxis.x - v.x*cardinalAxis.z;
+ result.z = v.x*cardinalAxis.y - v.y*cardinalAxis.x;
+
+ return result;
+}
+
+// Calculate vector length
+RMAPI float Vector3Length(const Vector3 v)
+{
+ float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
+
+ return result;
+}
+
+// Calculate vector square length
+RMAPI float Vector3LengthSqr(const Vector3 v)
+{
+ float result = v.x*v.x + v.y*v.y + v.z*v.z;
+
+ return result;
+}
+
+// Calculate two vectors dot product
+RMAPI float Vector3DotProduct(Vector3 v1, Vector3 v2)
+{
+ float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
+
+ return result;
+}
+
+// Calculate distance between two vectors
+RMAPI float Vector3Distance(Vector3 v1, Vector3 v2)
+{
+ float result = 0.0f;
+
+ float dx = v2.x - v1.x;
+ float dy = v2.y - v1.y;
+ float dz = v2.z - v1.z;
+ result = sqrtf(dx*dx + dy*dy + dz*dz);
+
+ return result;
+}
+
+// Calculate square distance between two vectors
+RMAPI float Vector3DistanceSqr(Vector3 v1, Vector3 v2)
+{
+ float result = 0.0f;
+
+ float dx = v2.x - v1.x;
+ float dy = v2.y - v1.y;
+ float dz = v2.z - v1.z;
+ result = dx*dx + dy*dy + dz*dz;
+
+ return result;
+}
+
+// Calculate angle between two vectors
+RMAPI float Vector3Angle(Vector3 v1, Vector3 v2)
+{
+ float result = 0.0f;
+
+ Vector3 cross = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
+ float len = sqrtf(cross.x*cross.x + cross.y*cross.y + cross.z*cross.z);
+ float dot = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
+ result = atan2f(len, dot);
+
+ return result;
+}
+
+// Negate provided vector (invert direction)
+RMAPI Vector3 Vector3Negate(Vector3 v)
+{
+ Vector3 result = { -v.x, -v.y, -v.z };
+
+ return result;
+}
+
+// Divide vector by vector
+RMAPI Vector3 Vector3Divide(Vector3 v1, Vector3 v2)
+{
+ Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
+
+ return result;
+}
+
+// Normalize provided vector
+RMAPI Vector3 Vector3Normalize(Vector3 v)
+{
+ Vector3 result = v;
+
+ float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
+ if (length == 0.0f) length = 1.0f;
+ float ilength = 1.0f/length;
+
+ result.x *= ilength;
+ result.y *= ilength;
+ result.z *= ilength;
+
+ return result;
+}
+
+// Orthonormalize provided vectors
+// Makes vectors normalized and orthogonal to each other
+// Gram-Schmidt function implementation
+RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
+{
+ float length = 0.0f;
+ float ilength = 0.0f;
+
+ // Vector3Normalize(*v1);
+ Vector3 v = *v1;
+ length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
+ if (length == 0.0f) length = 1.0f;
+ ilength = 1.0f/length;
+ v1->x *= ilength;
+ v1->y *= ilength;
+ v1->z *= ilength;
+
+ // Vector3CrossProduct(*v1, *v2)
+ Vector3 vn1 = { v1->y*v2->z - v1->z*v2->y, v1->z*v2->x - v1->x*v2->z, v1->x*v2->y - v1->y*v2->x };
+
+ // Vector3Normalize(vn1);
+ v = vn1;
+ length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
+ if (length == 0.0f) length = 1.0f;
+ ilength = 1.0f/length;
+ vn1.x *= ilength;
+ vn1.y *= ilength;
+ vn1.z *= ilength;
+
+ // Vector3CrossProduct(vn1, *v1)
+ Vector3 vn2 = { vn1.y*v1->z - vn1.z*v1->y, vn1.z*v1->x - vn1.x*v1->z, vn1.x*v1->y - vn1.y*v1->x };
+
+ *v2 = vn2;
+}
+
+// Transforms a Vector3 by a given Matrix
+RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat)
+{
+ Vector3 result = { 0 };
+
+ float x = v.x;
+ float y = v.y;
+ float z = v.z;
+
+ result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
+ result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
+ result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
+
+ return result;
+}
+
+// Transform a vector by quaternion rotation
+RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
+{
+ Vector3 result = { 0 };
+
+ result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
+ result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
+ result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
+
+ return result;
+}
+
+// Calculate linear interpolation between two vectors
+RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
+{
+ Vector3 result = { 0 };
+
+ result.x = v1.x + amount*(v2.x - v1.x);
+ result.y = v1.y + amount*(v2.y - v1.y);
+ result.z = v1.z + amount*(v2.z - v1.z);
+
+ return result;
+}
+
+// Calculate reflected vector to normal
+RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
+{
+ Vector3 result = { 0 };
+
+ // I is the original vector
+ // N is the normal of the incident plane
+ // R = I - (2*N*(DotProduct[I, N]))
+
+ float dotProduct = (v.x*normal.x + v.y*normal.y + v.z*normal.z);
+
+ result.x = v.x - (2.0f*normal.x)*dotProduct;
+ result.y = v.y - (2.0f*normal.y)*dotProduct;
+ result.z = v.z - (2.0f*normal.z)*dotProduct;
+
+ return result;
+}
+
+// Get min value for each pair of components
+RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2)
+{
+ Vector3 result = { 0 };
+
+ result.x = fminf(v1.x, v2.x);
+ result.y = fminf(v1.y, v2.y);
+ result.z = fminf(v1.z, v2.z);
+
+ return result;
+}
+
+// Get max value for each pair of components
+RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2)
+{
+ Vector3 result = { 0 };
+
+ result.x = fmaxf(v1.x, v2.x);
+ result.y = fmaxf(v1.y, v2.y);
+ result.z = fmaxf(v1.z, v2.z);
+
+ return result;
+}
+
+// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
+// NOTE: Assumes P is on the plane of the triangle
+RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
+{
+ Vector3 result = { 0 };
+
+ Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z }; // Vector3Subtract(b, a)
+ Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z }; // Vector3Subtract(c, a)
+ Vector3 v2 = { p.x - a.x, p.y - a.y, p.z - a.z }; // Vector3Subtract(p, a)
+ float d00 = (v0.x*v0.x + v0.y*v0.y + v0.z*v0.z); // Vector3DotProduct(v0, v0)
+ float d01 = (v0.x*v1.x + v0.y*v1.y + v0.z*v1.z); // Vector3DotProduct(v0, v1)
+ float d11 = (v1.x*v1.x + v1.y*v1.y + v1.z*v1.z); // Vector3DotProduct(v1, v1)
+ float d20 = (v2.x*v0.x + v2.y*v0.y + v2.z*v0.z); // Vector3DotProduct(v2, v0)
+ float d21 = (v2.x*v1.x + v2.y*v1.y + v2.z*v1.z); // Vector3DotProduct(v2, v1)
+
+ float denom = d00*d11 - d01*d01;
+
+ result.y = (d11*d20 - d01*d21)/denom;
+ result.z = (d00*d21 - d01*d20)/denom;
+ result.x = 1.0f - (result.z + result.y);
+
+ return result;
+}
+
+// Projects a Vector3 from screen space into object space
+// NOTE: We are avoiding calling other raymath functions despite available
+RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view)
+{
+ Vector3 result = { 0 };
+
+ // Calculate unproject matrix (multiply view patrix by projection matrix) and invert it
+ Matrix matViewProj = { // MatrixMultiply(view, projection);
+ view.m0*projection.m0 + view.m1*projection.m4 + view.m2*projection.m8 + view.m3*projection.m12,
+ view.m0*projection.m1 + view.m1*projection.m5 + view.m2*projection.m9 + view.m3*projection.m13,
+ view.m0*projection.m2 + view.m1*projection.m6 + view.m2*projection.m10 + view.m3*projection.m14,
+ view.m0*projection.m3 + view.m1*projection.m7 + view.m2*projection.m11 + view.m3*projection.m15,
+ view.m4*projection.m0 + view.m5*projection.m4 + view.m6*projection.m8 + view.m7*projection.m12,
+ view.m4*projection.m1 + view.m5*projection.m5 + view.m6*projection.m9 + view.m7*projection.m13,
+ view.m4*projection.m2 + view.m5*projection.m6 + view.m6*projection.m10 + view.m7*projection.m14,
+ view.m4*projection.m3 + view.m5*projection.m7 + view.m6*projection.m11 + view.m7*projection.m15,
+ view.m8*projection.m0 + view.m9*projection.m4 + view.m10*projection.m8 + view.m11*projection.m12,
+ view.m8*projection.m1 + view.m9*projection.m5 + view.m10*projection.m9 + view.m11*projection.m13,
+ view.m8*projection.m2 + view.m9*projection.m6 + view.m10*projection.m10 + view.m11*projection.m14,
+ view.m8*projection.m3 + view.m9*projection.m7 + view.m10*projection.m11 + view.m11*projection.m15,
+ view.m12*projection.m0 + view.m13*projection.m4 + view.m14*projection.m8 + view.m15*projection.m12,
+ view.m12*projection.m1 + view.m13*projection.m5 + view.m14*projection.m9 + view.m15*projection.m13,
+ view.m12*projection.m2 + view.m13*projection.m6 + view.m14*projection.m10 + view.m15*projection.m14,
+ view.m12*projection.m3 + view.m13*projection.m7 + view.m14*projection.m11 + view.m15*projection.m15 };
+
+ // Calculate inverted matrix -> MatrixInvert(matViewProj);
+ // Cache the matrix values (speed optimization)
+ float a00 = matViewProj.m0, a01 = matViewProj.m1, a02 = matViewProj.m2, a03 = matViewProj.m3;
+ float a10 = matViewProj.m4, a11 = matViewProj.m5, a12 = matViewProj.m6, a13 = matViewProj.m7;
+ float a20 = matViewProj.m8, a21 = matViewProj.m9, a22 = matViewProj.m10, a23 = matViewProj.m11;
+ float a30 = matViewProj.m12, a31 = matViewProj.m13, a32 = matViewProj.m14, a33 = matViewProj.m15;
+
+ float b00 = a00*a11 - a01*a10;
+ float b01 = a00*a12 - a02*a10;
+ float b02 = a00*a13 - a03*a10;
+ float b03 = a01*a12 - a02*a11;
+ float b04 = a01*a13 - a03*a11;
+ float b05 = a02*a13 - a03*a12;
+ float b06 = a20*a31 - a21*a30;
+ float b07 = a20*a32 - a22*a30;
+ float b08 = a20*a33 - a23*a30;
+ float b09 = a21*a32 - a22*a31;
+ float b10 = a21*a33 - a23*a31;
+ float b11 = a22*a33 - a23*a32;
+
+ // Calculate the invert determinant (inlined to avoid double-caching)
+ float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
+
+ Matrix matViewProjInv = {
+ (a11*b11 - a12*b10 + a13*b09)*invDet,
+ (-a01*b11 + a02*b10 - a03*b09)*invDet,
+ (a31*b05 - a32*b04 + a33*b03)*invDet,
+ (-a21*b05 + a22*b04 - a23*b03)*invDet,
+ (-a10*b11 + a12*b08 - a13*b07)*invDet,
+ (a00*b11 - a02*b08 + a03*b07)*invDet,
+ (-a30*b05 + a32*b02 - a33*b01)*invDet,
+ (a20*b05 - a22*b02 + a23*b01)*invDet,
+ (a10*b10 - a11*b08 + a13*b06)*invDet,
+ (-a00*b10 + a01*b08 - a03*b06)*invDet,
+ (a30*b04 - a31*b02 + a33*b00)*invDet,
+ (-a20*b04 + a21*b02 - a23*b00)*invDet,
+ (-a10*b09 + a11*b07 - a12*b06)*invDet,
+ (a00*b09 - a01*b07 + a02*b06)*invDet,
+ (-a30*b03 + a31*b01 - a32*b00)*invDet,
+ (a20*b03 - a21*b01 + a22*b00)*invDet };
+
+ // Create quaternion from source point
+ Quaternion quat = { source.x, source.y, source.z, 1.0f };
+
+ // Multiply quat point by unproject matrix
+ Quaternion qtransformed = { // QuaternionTransform(quat, matViewProjInv)
+ matViewProjInv.m0*quat.x + matViewProjInv.m4*quat.y + matViewProjInv.m8*quat.z + matViewProjInv.m12*quat.w,
+ matViewProjInv.m1*quat.x + matViewProjInv.m5*quat.y + matViewProjInv.m9*quat.z + matViewProjInv.m13*quat.w,
+ matViewProjInv.m2*quat.x + matViewProjInv.m6*quat.y + matViewProjInv.m10*quat.z + matViewProjInv.m14*quat.w,
+ matViewProjInv.m3*quat.x + matViewProjInv.m7*quat.y + matViewProjInv.m11*quat.z + matViewProjInv.m15*quat.w };
+
+ // Normalized world points in vectors
+ result.x = qtransformed.x/qtransformed.w;
+ result.y = qtransformed.y/qtransformed.w;
+ result.z = qtransformed.z/qtransformed.w;
+
+ return result;
+}
+
+// Get Vector3 as float array
+RMAPI float3 Vector3ToFloatV(Vector3 v)
+{
+ float3 buffer = { 0 };
+
+ buffer.v[0] = v.x;
+ buffer.v[1] = v.y;
+ buffer.v[2] = v.z;
+
+ return buffer;
+}
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Matrix math
+//----------------------------------------------------------------------------------
+
+// Compute matrix determinant
+RMAPI float MatrixDeterminant(Matrix mat)
+{
+ float result = 0.0f;
+
+ // Cache the matrix values (speed optimization)
+ float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
+ float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
+ float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
+ float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
+
+ result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
+ a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
+ a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
+ a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
+ a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
+ a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
+
+ return result;
+}
+
+// Get the trace of the matrix (sum of the values along the diagonal)
+RMAPI float MatrixTrace(Matrix mat)
+{
+ float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
+
+ return result;
+}
+
+// Transposes provided matrix
+RMAPI Matrix MatrixTranspose(Matrix mat)
+{
+ Matrix result = { 0 };
+
+ result.m0 = mat.m0;
+ result.m1 = mat.m4;
+ result.m2 = mat.m8;
+ result.m3 = mat.m12;
+ result.m4 = mat.m1;
+ result.m5 = mat.m5;
+ result.m6 = mat.m9;
+ result.m7 = mat.m13;
+ result.m8 = mat.m2;
+ result.m9 = mat.m6;
+ result.m10 = mat.m10;
+ result.m11 = mat.m14;
+ result.m12 = mat.m3;
+ result.m13 = mat.m7;
+ result.m14 = mat.m11;
+ result.m15 = mat.m15;
+
+ return result;
+}
+
+// Invert provided matrix
+RMAPI Matrix MatrixInvert(Matrix mat)
+{
+ Matrix result = { 0 };
+
+ // Cache the matrix values (speed optimization)
+ float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
+ float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
+ float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
+ float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
+
+ float b00 = a00*a11 - a01*a10;
+ float b01 = a00*a12 - a02*a10;
+ float b02 = a00*a13 - a03*a10;
+ float b03 = a01*a12 - a02*a11;
+ float b04 = a01*a13 - a03*a11;
+ float b05 = a02*a13 - a03*a12;
+ float b06 = a20*a31 - a21*a30;
+ float b07 = a20*a32 - a22*a30;
+ float b08 = a20*a33 - a23*a30;
+ float b09 = a21*a32 - a22*a31;
+ float b10 = a21*a33 - a23*a31;
+ float b11 = a22*a33 - a23*a32;
+
+ // Calculate the invert determinant (inlined to avoid double-caching)
+ float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
+
+ result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
+ result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
+ result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
+ result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
+ result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
+ result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
+ result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
+ result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
+ result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
+ result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
+ result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
+ result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
+ result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
+ result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
+ result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
+ result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
+
+ return result;
+}
+
+// Normalize provided matrix
+RMAPI Matrix MatrixNormalize(Matrix mat)
+{
+ Matrix result = { 0 };
+
+ // Cache the matrix values (speed optimization)
+ float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
+ float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
+ float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
+ float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
+
+ // MatrixDeterminant(mat)
+ float det = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
+ a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
+ a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
+ a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
+ a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
+ a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
+
+ result.m0 = mat.m0/det;
+ result.m1 = mat.m1/det;
+ result.m2 = mat.m2/det;
+ result.m3 = mat.m3/det;
+ result.m4 = mat.m4/det;
+ result.m5 = mat.m5/det;
+ result.m6 = mat.m6/det;
+ result.m7 = mat.m7/det;
+ result.m8 = mat.m8/det;
+ result.m9 = mat.m9/det;
+ result.m10 = mat.m10/det;
+ result.m11 = mat.m11/det;
+ result.m12 = mat.m12/det;
+ result.m13 = mat.m13/det;
+ result.m14 = mat.m14/det;
+ result.m15 = mat.m15/det;
+
+ return result;
+}
+
+// Get identity matrix
+RMAPI Matrix MatrixIdentity(void)
+{
+ Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 1.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f };
+
+ return result;
+}
+
+// Add two matrices
+RMAPI Matrix MatrixAdd(Matrix left, Matrix right)
+{
+ Matrix result = { 0 };
+
+ result.m0 = left.m0 + right.m0;
+ result.m1 = left.m1 + right.m1;
+ result.m2 = left.m2 + right.m2;
+ result.m3 = left.m3 + right.m3;
+ result.m4 = left.m4 + right.m4;
+ result.m5 = left.m5 + right.m5;
+ result.m6 = left.m6 + right.m6;
+ result.m7 = left.m7 + right.m7;
+ result.m8 = left.m8 + right.m8;
+ result.m9 = left.m9 + right.m9;
+ result.m10 = left.m10 + right.m10;
+ result.m11 = left.m11 + right.m11;
+ result.m12 = left.m12 + right.m12;
+ result.m13 = left.m13 + right.m13;
+ result.m14 = left.m14 + right.m14;
+ result.m15 = left.m15 + right.m15;
+
+ return result;
+}
+
+// Subtract two matrices (left - right)
+RMAPI Matrix MatrixSubtract(Matrix left, Matrix right)
+{
+ Matrix result = { 0 };
+
+ result.m0 = left.m0 - right.m0;
+ result.m1 = left.m1 - right.m1;
+ result.m2 = left.m2 - right.m2;
+ result.m3 = left.m3 - right.m3;
+ result.m4 = left.m4 - right.m4;
+ result.m5 = left.m5 - right.m5;
+ result.m6 = left.m6 - right.m6;
+ result.m7 = left.m7 - right.m7;
+ result.m8 = left.m8 - right.m8;
+ result.m9 = left.m9 - right.m9;
+ result.m10 = left.m10 - right.m10;
+ result.m11 = left.m11 - right.m11;
+ result.m12 = left.m12 - right.m12;
+ result.m13 = left.m13 - right.m13;
+ result.m14 = left.m14 - right.m14;
+ result.m15 = left.m15 - right.m15;
+
+ return result;
+}
+
+// Get two matrix multiplication
+// NOTE: When multiplying matrices... the order matters!
+RMAPI Matrix MatrixMultiply(Matrix left, Matrix right)
+{
+ Matrix result = { 0 };
+
+ result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
+ result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
+ result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
+ result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
+ result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
+ result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
+ result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
+ result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
+ result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
+ result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
+ result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
+ result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
+ result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
+ result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
+ result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
+ result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
+
+ return result;
+}
+
+// Get translation matrix
+RMAPI Matrix MatrixTranslate(float x, float y, float z)
+{
+ Matrix result = { 1.0f, 0.0f, 0.0f, x,
+ 0.0f, 1.0f, 0.0f, y,
+ 0.0f, 0.0f, 1.0f, z,
+ 0.0f, 0.0f, 0.0f, 1.0f };
+
+ return result;
+}
+
+// Create rotation matrix from axis and angle
+// NOTE: Angle should be provided in radians
+RMAPI Matrix MatrixRotate(Vector3 axis, float angle)
+{
+ Matrix result = { 0 };
+
+ float x = axis.x, y = axis.y, z = axis.z;
+
+ float lengthSquared = x*x + y*y + z*z;
+
+ if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f))
+ {
+ float ilength = 1.0f/sqrtf(lengthSquared);
+ x *= ilength;
+ y *= ilength;
+ z *= ilength;
+ }
+
+ float sinres = sinf(angle);
+ float cosres = cosf(angle);
+ float t = 1.0f - cosres;
+
+ result.m0 = x*x*t + cosres;
+ result.m1 = y*x*t + z*sinres;
+ result.m2 = z*x*t - y*sinres;
+ result.m3 = 0.0f;
+
+ result.m4 = x*y*t - z*sinres;
+ result.m5 = y*y*t + cosres;
+ result.m6 = z*y*t + x*sinres;
+ result.m7 = 0.0f;
+
+ result.m8 = x*z*t + y*sinres;
+ result.m9 = y*z*t - x*sinres;
+ result.m10 = z*z*t + cosres;
+ result.m11 = 0.0f;
+
+ result.m12 = 0.0f;
+ result.m13 = 0.0f;
+ result.m14 = 0.0f;
+ result.m15 = 1.0f;
+
+ return result;
+}
+
+// Get x-rotation matrix (angle in radians)
+RMAPI Matrix MatrixRotateX(float angle)
+{
+ Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 1.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
+
+ float cosres = cosf(angle);
+ float sinres = sinf(angle);
+
+ result.m5 = cosres;
+ result.m6 = -sinres;
+ result.m9 = sinres;
+ result.m10 = cosres;
+
+ return result;
+}
+
+// Get y-rotation matrix (angle in radians)
+RMAPI Matrix MatrixRotateY(float angle)
+{
+ Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 1.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
+
+ float cosres = cosf(angle);
+ float sinres = sinf(angle);
+
+ result.m0 = cosres;
+ result.m2 = sinres;
+ result.m8 = -sinres;
+ result.m10 = cosres;
+
+ return result;
+}
+
+// Get z-rotation matrix (angle in radians)
+RMAPI Matrix MatrixRotateZ(float angle)
+{
+ Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 1.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
+
+ float cosres = cosf(angle);
+ float sinres = sinf(angle);
+
+ result.m0 = cosres;
+ result.m1 = -sinres;
+ result.m4 = sinres;
+ result.m5 = cosres;
+
+ return result;
+}
+
+
+// Get xyz-rotation matrix (angles in radians)
+RMAPI Matrix MatrixRotateXYZ(Vector3 ang)
+{
+ Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 1.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
+
+ float cosz = cosf(-ang.z);
+ float sinz = sinf(-ang.z);
+ float cosy = cosf(-ang.y);
+ float siny = sinf(-ang.y);
+ float cosx = cosf(-ang.x);
+ float sinx = sinf(-ang.x);
+
+ result.m0 = cosz*cosy;
+ result.m4 = (cosz*siny*sinx) - (sinz*cosx);
+ result.m8 = (cosz*siny*cosx) + (sinz*sinx);
+
+ result.m1 = sinz*cosy;
+ result.m5 = (sinz*siny*sinx) + (cosz*cosx);
+ result.m9 = (sinz*siny*cosx) - (cosz*sinx);
+
+ result.m2 = -siny;
+ result.m6 = cosy*sinx;
+ result.m10= cosy*cosx;
+
+ return result;
+}
+
+// Get zyx-rotation matrix (angles in radians)
+RMAPI Matrix MatrixRotateZYX(Vector3 ang)
+{
+ Matrix result = { 0 };
+
+ float cz = cosf(ang.z);
+ float sz = sinf(ang.z);
+ float cy = cosf(ang.y);
+ float sy = sinf(ang.y);
+ float cx = cosf(ang.x);
+ float sx = sinf(ang.x);
+
+ result.m0 = cz*cy;
+ result.m1 = cz*sy*sx - cx*sz;
+ result.m2 = sz*sx + cz*cx*sy;
+ result.m3 = 0;
+
+ result.m4 = cy*sz;
+ result.m5 = cz*cx + sz*sy*sx;
+ result.m6 = cx*sz*sy - cz*sx;
+ result.m7 = 0;
+
+ result.m8 = -sy;
+ result.m9 = cy*sx;
+ result.m10 = cy*cx;
+ result.m11 = 0;
+
+ result.m12 = 0;
+ result.m13 = 0;
+ result.m14 = 0;
+ result.m15 = 1;
+
+ return result;
+}
+
+// Get scaling matrix
+RMAPI Matrix MatrixScale(float x, float y, float z)
+{
+ Matrix result = { x, 0.0f, 0.0f, 0.0f,
+ 0.0f, y, 0.0f, 0.0f,
+ 0.0f, 0.0f, z, 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f };
+
+ return result;
+}
+
+// Get perspective projection matrix
+RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
+{
+ Matrix result = { 0 };
+
+ float rl = (float)(right - left);
+ float tb = (float)(top - bottom);
+ float fn = (float)(far - near);
+
+ result.m0 = ((float)near*2.0f)/rl;
+ result.m1 = 0.0f;
+ result.m2 = 0.0f;
+ result.m3 = 0.0f;
+
+ result.m4 = 0.0f;
+ result.m5 = ((float)near*2.0f)/tb;
+ result.m6 = 0.0f;
+ result.m7 = 0.0f;
+
+ result.m8 = ((float)right + (float)left)/rl;
+ result.m9 = ((float)top + (float)bottom)/tb;
+ result.m10 = -((float)far + (float)near)/fn;
+ result.m11 = -1.0f;
+
+ result.m12 = 0.0f;
+ result.m13 = 0.0f;
+ result.m14 = -((float)far*(float)near*2.0f)/fn;
+ result.m15 = 0.0f;
+
+ return result;
+}
+
+// Get perspective projection matrix
+// NOTE: Angle should be provided in radians
+RMAPI Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
+{
+ Matrix result = { 0 };
+
+ double top = near*tan(fovy*0.5);
+ double bottom = -top;
+ double right = top*aspect;
+ double left = -right;
+
+ // MatrixFrustum(-right, right, -top, top, near, far);
+ float rl = (float)(right - left);
+ float tb = (float)(top - bottom);
+ float fn = (float)(far - near);
+
+ result.m0 = ((float)near*2.0f)/rl;
+ result.m5 = ((float)near*2.0f)/tb;
+ result.m8 = ((float)right + (float)left)/rl;
+ result.m9 = ((float)top + (float)bottom)/tb;
+ result.m10 = -((float)far + (float)near)/fn;
+ result.m11 = -1.0f;
+ result.m14 = -((float)far*(float)near*2.0f)/fn;
+
+ return result;
+}
+
+// Get orthographic projection matrix
+RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
+{
+ Matrix result = { 0 };
+
+ float rl = (float)(right - left);
+ float tb = (float)(top - bottom);
+ float fn = (float)(far - near);
+
+ result.m0 = 2.0f/rl;
+ result.m1 = 0.0f;
+ result.m2 = 0.0f;
+ result.m3 = 0.0f;
+ result.m4 = 0.0f;
+ result.m5 = 2.0f/tb;
+ result.m6 = 0.0f;
+ result.m7 = 0.0f;
+ result.m8 = 0.0f;
+ result.m9 = 0.0f;
+ result.m10 = -2.0f/fn;
+ result.m11 = 0.0f;
+ result.m12 = -((float)left + (float)right)/rl;
+ result.m13 = -((float)top + (float)bottom)/tb;
+ result.m14 = -((float)far + (float)near)/fn;
+ result.m15 = 1.0f;
+
+ return result;
+}
+
+// Get camera look-at matrix (view matrix)
+RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
+{
+ Matrix result = { 0 };
+
+ float length = 0.0f;
+ float ilength = 0.0f;
+
+ // Vector3Subtract(eye, target)
+ Vector3 vz = { eye.x - target.x, eye.y - target.y, eye.z - target.z };
+
+ // Vector3Normalize(vz)
+ Vector3 v = vz;
+ length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
+ if (length == 0.0f) length = 1.0f;
+ ilength = 1.0f/length;
+ vz.x *= ilength;
+ vz.y *= ilength;
+ vz.z *= ilength;
+
+ // Vector3CrossProduct(up, vz)
+ Vector3 vx = { up.y*vz.z - up.z*vz.y, up.z*vz.x - up.x*vz.z, up.x*vz.y - up.y*vz.x };
+
+ // Vector3Normalize(x)
+ v = vx;
+ length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
+ if (length == 0.0f) length = 1.0f;
+ ilength = 1.0f/length;
+ vx.x *= ilength;
+ vx.y *= ilength;
+ vx.z *= ilength;
+
+ // Vector3CrossProduct(vz, vx)
+ Vector3 vy = { vz.y*vx.z - vz.z*vx.y, vz.z*vx.x - vz.x*vx.z, vz.x*vx.y - vz.y*vx.x };
+
+ result.m0 = vx.x;
+ result.m1 = vy.x;
+ result.m2 = vz.x;
+ result.m3 = 0.0f;
+ result.m4 = vx.y;
+ result.m5 = vy.y;
+ result.m6 = vz.y;
+ result.m7 = 0.0f;
+ result.m8 = vx.z;
+ result.m9 = vy.z;
+ result.m10 = vz.z;
+ result.m11 = 0.0f;
+ result.m12 = -(vx.x*eye.x + vx.y*eye.y + vx.z*eye.z); // Vector3DotProduct(vx, eye)
+ result.m13 = -(vy.x*eye.x + vy.y*eye.y + vy.z*eye.z); // Vector3DotProduct(vy, eye)
+ result.m14 = -(vz.x*eye.x + vz.y*eye.y + vz.z*eye.z); // Vector3DotProduct(vz, eye)
+ result.m15 = 1.0f;
+
+ return result;
+}
+
+// Get float array of matrix data
+RMAPI float16 MatrixToFloatV(Matrix mat)
+{
+ float16 result = { 0 };
+
+ result.v[0] = mat.m0;
+ result.v[1] = mat.m1;
+ result.v[2] = mat.m2;
+ result.v[3] = mat.m3;
+ result.v[4] = mat.m4;
+ result.v[5] = mat.m5;
+ result.v[6] = mat.m6;
+ result.v[7] = mat.m7;
+ result.v[8] = mat.m8;
+ result.v[9] = mat.m9;
+ result.v[10] = mat.m10;
+ result.v[11] = mat.m11;
+ result.v[12] = mat.m12;
+ result.v[13] = mat.m13;
+ result.v[14] = mat.m14;
+ result.v[15] = mat.m15;
+
+ return result;
+}
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Quaternion math
+//----------------------------------------------------------------------------------
+
+// Add two quaternions
+RMAPI Quaternion QuaternionAdd(Quaternion q1, Quaternion q2)
+{
+ Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w};
+
+ return result;
+}
+
+// Add quaternion and float value
+RMAPI Quaternion QuaternionAddValue(Quaternion q, float add)
+{
+ Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add};
+
+ return result;
+}
+
+// Subtract two quaternions
+RMAPI Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2)
+{
+ Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w};
+
+ return result;
+}
+
+// Subtract quaternion and float value
+RMAPI Quaternion QuaternionSubtractValue(Quaternion q, float sub)
+{
+ Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub};
+
+ return result;
+}
+
+// Get identity quaternion
+RMAPI Quaternion QuaternionIdentity(void)
+{
+ Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
+
+ return result;
+}
+
+// Computes the length of a quaternion
+RMAPI float QuaternionLength(Quaternion q)
+{
+ float result = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
+
+ return result;
+}
+
+// Normalize provided quaternion
+RMAPI Quaternion QuaternionNormalize(Quaternion q)
+{
+ Quaternion result = { 0 };
+
+ float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
+ if (length == 0.0f) length = 1.0f;
+ float ilength = 1.0f/length;
+
+ result.x = q.x*ilength;
+ result.y = q.y*ilength;
+ result.z = q.z*ilength;
+ result.w = q.w*ilength;
+
+ return result;
+}
+
+// Invert provided quaternion
+RMAPI Quaternion QuaternionInvert(Quaternion q)
+{
+ Quaternion result = q;
+
+ float lengthSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w;
+
+ if (lengthSq != 0.0)
+ {
+ float invLength = 1.0f/lengthSq;
+
+ result.x *= -invLength;
+ result.y *= -invLength;
+ result.z *= -invLength;
+ result.w *= invLength;
+ }
+
+ return result;
+}
+
+// Calculate two quaternion multiplication
+RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
+{
+ Quaternion result = { 0 };
+
+ float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
+ float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
+
+ result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
+ result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
+ result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
+ result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
+
+ return result;
+}
+
+// Scale quaternion by float value
+RMAPI Quaternion QuaternionScale(Quaternion q, float mul)
+{
+ Quaternion result = { 0 };
+
+ float qax = q.x, qay = q.y, qaz = q.z, qaw = q.w;
+
+ result.x = qax*mul + qaw*mul + qay*mul - qaz*mul;
+ result.y = qay*mul + qaw*mul + qaz*mul - qax*mul;
+ result.z = qaz*mul + qaw*mul + qax*mul - qay*mul;
+ result.w = qaw*mul - qax*mul - qay*mul - qaz*mul;
+
+ return result;
+}
+
+// Divide two quaternions
+RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2)
+{
+ Quaternion result = { q1.x/q2.x, q1.y/q2.y, q1.z/q2.z, q1.w/q2.w };
+
+ return result;
+}
+
+// Calculate linear interpolation between two quaternions
+RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
+{
+ Quaternion result = { 0 };
+
+ result.x = q1.x + amount*(q2.x - q1.x);
+ result.y = q1.y + amount*(q2.y - q1.y);
+ result.z = q1.z + amount*(q2.z - q1.z);
+ result.w = q1.w + amount*(q2.w - q1.w);
+
+ return result;
+}
+
+// Calculate slerp-optimized interpolation between two quaternions
+RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
+{
+ Quaternion result = { 0 };
+
+ // QuaternionLerp(q1, q2, amount)
+ result.x = q1.x + amount*(q2.x - q1.x);
+ result.y = q1.y + amount*(q2.y - q1.y);
+ result.z = q1.z + amount*(q2.z - q1.z);
+ result.w = q1.w + amount*(q2.w - q1.w);
+
+ // QuaternionNormalize(q);
+ Quaternion q = result;
+ float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
+ if (length == 0.0f) length = 1.0f;
+ float ilength = 1.0f/length;
+
+ result.x = q.x*ilength;
+ result.y = q.y*ilength;
+ result.z = q.z*ilength;
+ result.w = q.w*ilength;
+
+ return result;
+}
+
+// Calculates spherical linear interpolation between two quaternions
+RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
+{
+ Quaternion result = { 0 };
+
+ float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
+
+ if (cosHalfTheta < 0)
+ {
+ q2.x = -q2.x; q2.y = -q2.y; q2.z = -q2.z; q2.w = -q2.w;
+ cosHalfTheta = -cosHalfTheta;
+ }
+
+ if (fabs(cosHalfTheta) >= 1.0f) result = q1;
+ else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
+ else
+ {
+ float halfTheta = acosf(cosHalfTheta);
+ float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);
+
+ if (fabs(sinHalfTheta) < 0.001f)
+ {
+ result.x = (q1.x*0.5f + q2.x*0.5f);
+ result.y = (q1.y*0.5f + q2.y*0.5f);
+ result.z = (q1.z*0.5f + q2.z*0.5f);
+ result.w = (q1.w*0.5f + q2.w*0.5f);
+ }
+ else
+ {
+ float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
+ float ratioB = sinf(amount*halfTheta)/sinHalfTheta;
+
+ result.x = (q1.x*ratioA + q2.x*ratioB);
+ result.y = (q1.y*ratioA + q2.y*ratioB);
+ result.z = (q1.z*ratioA + q2.z*ratioB);
+ result.w = (q1.w*ratioA + q2.w*ratioB);
+ }
+ }
+
+ return result;
+}
+
+// Calculate quaternion based on the rotation from one vector to another
+RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
+{
+ Quaternion result = { 0 };
+
+ float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z); // Vector3DotProduct(from, to)
+ Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to)
+
+ result.x = cross.x;
+ result.y = cross.y;
+ result.z = cross.z;
+ result.w = 1.0f + cos2Theta;
+
+ // QuaternionNormalize(q);
+ // NOTE: Normalize to essentially nlerp the original and identity to 0.5
+ Quaternion q = result;
+ float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
+ if (length == 0.0f) length = 1.0f;
+ float ilength = 1.0f/length;
+
+ result.x = q.x*ilength;
+ result.y = q.y*ilength;
+ result.z = q.z*ilength;
+ result.w = q.w*ilength;
+
+ return result;
+}
+
+// Get a quaternion for a given rotation matrix
+RMAPI Quaternion QuaternionFromMatrix(Matrix mat)
+{
+ Quaternion result = { 0 };
+
+ if ((mat.m0 > mat.m5) && (mat.m0 > mat.m10))
+ {
+ float s = sqrtf(1.0f + mat.m0 - mat.m5 - mat.m10)*2;
+
+ result.x = 0.25f*s;
+ result.y = (mat.m4 + mat.m1)/s;
+ result.z = (mat.m2 + mat.m8)/s;
+ result.w = (mat.m9 - mat.m6)/s;
+ }
+ else if (mat.m5 > mat.m10)
+ {
+ float s = sqrtf(1.0f + mat.m5 - mat.m0 - mat.m10)*2;
+ result.x = (mat.m4 + mat.m1)/s;
+ result.y = 0.25f*s;
+ result.z = (mat.m9 + mat.m6)/s;
+ result.w = (mat.m2 - mat.m8)/s;
+ }
+ else
+ {
+ float s = sqrtf(1.0f + mat.m10 - mat.m0 - mat.m5)*2;
+ result.x = (mat.m2 + mat.m8)/s;
+ result.y = (mat.m9 + mat.m6)/s;
+ result.z = 0.25f*s;
+ result.w = (mat.m4 - mat.m1)/s;
+ }
+
+ return result;
+}
+
+// Get a matrix for a given quaternion
+RMAPI Matrix QuaternionToMatrix(Quaternion q)
+{
+ Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 1.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
+
+ float a2 = q.x*q.x;
+ float b2 = q.y*q.y;
+ float c2 = q.z*q.z;
+ float ac = q.x*q.z;
+ float ab = q.x*q.y;
+ float bc = q.y*q.z;
+ float ad = q.w*q.x;
+ float bd = q.w*q.y;
+ float cd = q.w*q.z;
+
+ result.m0 = 1 - 2*(b2 + c2);
+ result.m1 = 2*(ab + cd);
+ result.m2 = 2*(ac - bd);
+
+ result.m4 = 2*(ab - cd);
+ result.m5 = 1 - 2*(a2 + c2);
+ result.m6 = 2*(bc + ad);
+
+ result.m8 = 2*(ac + bd);
+ result.m9 = 2*(bc - ad);
+ result.m10 = 1 - 2*(a2 + b2);
+
+ return result;
+}
+
+// Get rotation quaternion for an angle and axis
+// NOTE: angle must be provided in radians
+RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
+{
+ Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
+
+ float axisLength = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
+
+ if (axisLength != 0.0f)
+ {
+ angle *= 0.5f;
+
+ float length = 0.0f;
+ float ilength = 0.0f;
+
+ // Vector3Normalize(axis)
+ Vector3 v = axis;
+ length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
+ if (length == 0.0f) length = 1.0f;
+ ilength = 1.0f/length;
+ axis.x *= ilength;
+ axis.y *= ilength;
+ axis.z *= ilength;
+
+ float sinres = sinf(angle);
+ float cosres = cosf(angle);
+
+ result.x = axis.x*sinres;
+ result.y = axis.y*sinres;
+ result.z = axis.z*sinres;
+ result.w = cosres;
+
+ // QuaternionNormalize(q);
+ Quaternion q = result;
+ length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
+ if (length == 0.0f) length = 1.0f;
+ ilength = 1.0f/length;
+ result.x = q.x*ilength;
+ result.y = q.y*ilength;
+ result.z = q.z*ilength;
+ result.w = q.w*ilength;
+ }
+
+ return result;
+}
+
+// Get the rotation angle and axis for a given quaternion
+RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
+{
+ if (fabs(q.w) > 1.0f)
+ {
+ // QuaternionNormalize(q);
+ float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
+ if (length == 0.0f) length = 1.0f;
+ float ilength = 1.0f/length;
+
+ q.x = q.x*ilength;
+ q.y = q.y*ilength;
+ q.z = q.z*ilength;
+ q.w = q.w*ilength;
+ }
+
+ Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
+ float resAngle = 2.0f*acosf(q.w);
+ float den = sqrtf(1.0f - q.w*q.w);
+
+ if (den > 0.0001f)
+ {
+ resAxis.x = q.x/den;
+ resAxis.y = q.y/den;
+ resAxis.z = q.z/den;
+ }
+ else
+ {
+ // This occurs when the angle is zero.
+ // Not a problem: just set an arbitrary normalized axis.
+ resAxis.x = 1.0f;
+ }
+
+ *outAxis = resAxis;
+ *outAngle = resAngle;
+}
+
+// Get the quaternion equivalent to Euler angles
+// NOTE: Rotation order is ZYX
+RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll)
+{
+ Quaternion result = { 0 };
+
+ float x0 = cosf(pitch*0.5f);
+ float x1 = sinf(pitch*0.5f);
+ float y0 = cosf(yaw*0.5f);
+ float y1 = sinf(yaw*0.5f);
+ float z0 = cosf(roll*0.5f);
+ float z1 = sinf(roll*0.5f);
+
+ result.x = x1*y0*z0 - x0*y1*z1;
+ result.y = x0*y1*z0 + x1*y0*z1;
+ result.z = x0*y0*z1 - x1*y1*z0;
+ result.w = x0*y0*z0 + x1*y1*z1;
+
+ return result;
+}
+
+// Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
+// NOTE: Angles are returned in a Vector3 struct in radians
+RMAPI Vector3 QuaternionToEuler(Quaternion q)
+{
+ Vector3 result = { 0 };
+
+ // Roll (x-axis rotation)
+ float x0 = 2.0f*(q.w*q.x + q.y*q.z);
+ float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
+ result.x = atan2f(x0, x1);
+
+ // Pitch (y-axis rotation)
+ float y0 = 2.0f*(q.w*q.y - q.z*q.x);
+ y0 = y0 > 1.0f ? 1.0f : y0;
+ y0 = y0 < -1.0f ? -1.0f : y0;
+ result.y = asinf(y0);
+
+ // Yaw (z-axis rotation)
+ float z0 = 2.0f*(q.w*q.z + q.x*q.y);
+ float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
+ result.z = atan2f(z0, z1);
+
+ return result;
+}
+
+// Transform a quaternion given a transformation matrix
+RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat)
+{
+ Quaternion result = { 0 };
+
+ result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
+ result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
+ result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
+ result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
+
+ return result;
+}
+
+#endif // RAYMATH_H