From 95cde5c181b5fd1d9ee3f13db749799c4e8ac9d3 Mon Sep 17 00:00:00 2001 From: salaaad2 Date: Mon, 13 Jun 2022 22:15:48 +0200 Subject: add raylib to the build chain with -O3 and -march=native --- raylib/src/external/par_shapes.h | 2155 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 2155 insertions(+) create mode 100644 raylib/src/external/par_shapes.h (limited to 'raylib/src/external/par_shapes.h') diff --git a/raylib/src/external/par_shapes.h b/raylib/src/external/par_shapes.h new file mode 100644 index 0000000..994a605 --- /dev/null +++ b/raylib/src/external/par_shapes.h @@ -0,0 +1,2155 @@ +// SHAPES :: https://github.com/prideout/par +// Simple C library for creation and manipulation of triangle meshes. +// +// The API is divided into three sections: +// +// - Generators. Create parametric surfaces, platonic solids, etc. +// - Queries. Ask a mesh for its axis-aligned bounding box, etc. +// - Transforms. Rotate a mesh, merge it with another, add normals, etc. +// +// In addition to the comment block above each function declaration, the API +// has informal documentation here: +// +// https://prideout.net/shapes +// +// For our purposes, a "mesh" is a list of points and a list of triangles; the +// former is a flattened list of three-tuples (32-bit floats) and the latter is +// also a flattened list of three-tuples (16-bit uints). Triangles are always +// oriented such that their front face winds counter-clockwise. +// +// Optionally, meshes can contain 3D normals (one per vertex), and 2D texture +// coordinates (one per vertex). That's it! If you need something fancier, +// look elsewhere. +// +// Distributed under the MIT License, see bottom of file. + +#ifndef PAR_SHAPES_H +#define PAR_SHAPES_H + +#ifdef __cplusplus +extern "C" { +#endif + +#include +// Ray (@raysan5): Commented to avoid conflict with raylib bool +/* +#if !defined(_MSC_VER) +# include +#else // MSVC +# if _MSC_VER >= 1800 +# include +# else // stdbool.h missing prior to MSVC++ 12.0 (VS2013) +# define bool int +# define true 1 +# define false 0 +# endif +#endif +*/ + +#ifndef PAR_SHAPES_T +#define PAR_SHAPES_T uint16_t +#endif + +typedef struct par_shapes_mesh_s { + float* points; // Flat list of 3-tuples (X Y Z X Y Z...) + int npoints; // Number of points + PAR_SHAPES_T* triangles; // Flat list of 3-tuples (I J K I J K...) + int ntriangles; // Number of triangles + float* normals; // Optional list of 3-tuples (X Y Z X Y Z...) + float* tcoords; // Optional list of 2-tuples (U V U V U V...) +} par_shapes_mesh; + +void par_shapes_free_mesh(par_shapes_mesh*); + +// Generators ------------------------------------------------------------------ + +// Instance a cylinder that sits on the Z=0 plane using the given tessellation +// levels across the UV domain. Think of "slices" like a number of pizza +// slices, and "stacks" like a number of stacked rings. Height and radius are +// both 1.0, but they can easily be changed with par_shapes_scale. +par_shapes_mesh* par_shapes_create_cylinder(int slices, int stacks); + +// Cone is similar to cylinder but the radius diminishes to zero as Z increases. +// Again, height and radius are 1.0, but can be changed with par_shapes_scale. +par_shapes_mesh* par_shapes_create_cone(int slices, int stacks); + +// Create a disk of radius 1.0 with texture coordinates and normals by squashing +// a cone flat on the Z=0 plane. +par_shapes_mesh* par_shapes_create_parametric_disk(int slices, int stacks); + +// Create a donut that sits on the Z=0 plane with the specified inner radius. +// The outer radius can be controlled with par_shapes_scale. +par_shapes_mesh* par_shapes_create_torus(int slices, int stacks, float radius); + +// Create a sphere with texture coordinates and small triangles near the poles. +par_shapes_mesh* par_shapes_create_parametric_sphere(int slices, int stacks); + +// Approximate a sphere with a subdivided icosahedron, which produces a nice +// distribution of triangles, but no texture coordinates. Each subdivision +// level scales the number of triangles by four, so use a very low number. +par_shapes_mesh* par_shapes_create_subdivided_sphere(int nsubdivisions); + +// More parametric surfaces. +par_shapes_mesh* par_shapes_create_klein_bottle(int slices, int stacks); +par_shapes_mesh* par_shapes_create_trefoil_knot(int slices, int stacks, + float radius); +par_shapes_mesh* par_shapes_create_hemisphere(int slices, int stacks); +par_shapes_mesh* par_shapes_create_plane(int slices, int stacks); + +// Create a parametric surface from a callback function that consumes a 2D +// point in [0,1] and produces a 3D point. +typedef void (*par_shapes_fn)(float const*, float*, void*); +par_shapes_mesh* par_shapes_create_parametric(par_shapes_fn, int slices, + int stacks, void* userdata); + +// Generate points for a 20-sided polyhedron that fits in the unit sphere. +// Texture coordinates and normals are not generated. +par_shapes_mesh* par_shapes_create_icosahedron(); + +// Generate points for a 12-sided polyhedron that fits in the unit sphere. +// Again, texture coordinates and normals are not generated. +par_shapes_mesh* par_shapes_create_dodecahedron(); + +// More platonic solids. +par_shapes_mesh* par_shapes_create_octahedron(); +par_shapes_mesh* par_shapes_create_tetrahedron(); +par_shapes_mesh* par_shapes_create_cube(); + +// Generate an orientable disk shape in 3-space. Does not include normals or +// texture coordinates. +par_shapes_mesh* par_shapes_create_disk(float radius, int slices, + float const* center, float const* normal); + +// Create an empty shape. Useful for building scenes with merge_and_free. +par_shapes_mesh* par_shapes_create_empty(); + +// Generate a rock shape that sits on the Y=0 plane, and sinks into it a bit. +// This includes smooth normals but no texture coordinates. Each subdivision +// level scales the number of triangles by four, so use a very low number. +par_shapes_mesh* par_shapes_create_rock(int seed, int nsubdivisions); + +// Create trees or vegetation by executing a recursive turtle graphics program. +// The program is a list of command-argument pairs. See the unit test for +// an example. Texture coordinates and normals are not generated. +par_shapes_mesh* par_shapes_create_lsystem(char const* program, int slices, + int maxdepth); + +// Queries --------------------------------------------------------------------- + +// Dump out a text file conforming to the venerable OBJ format. +void par_shapes_export(par_shapes_mesh const*, char const* objfile); + +// Take a pointer to 6 floats and set them to min xyz, max xyz. +void par_shapes_compute_aabb(par_shapes_mesh const* mesh, float* aabb); + +// Make a deep copy of a mesh. To make a brand new copy, pass null to "target". +// To avoid memory churn, pass an existing mesh to "target". +par_shapes_mesh* par_shapes_clone(par_shapes_mesh const* mesh, + par_shapes_mesh* target); + +// Transformations ------------------------------------------------------------- + +void par_shapes_merge(par_shapes_mesh* dst, par_shapes_mesh const* src); +void par_shapes_translate(par_shapes_mesh*, float x, float y, float z); +void par_shapes_rotate(par_shapes_mesh*, float radians, float const* axis); +void par_shapes_scale(par_shapes_mesh*, float x, float y, float z); +void par_shapes_merge_and_free(par_shapes_mesh* dst, par_shapes_mesh* src); + +// Reverse the winding of a run of faces. Useful when drawing the inside of +// a Cornell Box. Pass 0 for nfaces to reverse every face in the mesh. +void par_shapes_invert(par_shapes_mesh*, int startface, int nfaces); + +// Remove all triangles whose area is less than minarea. +void par_shapes_remove_degenerate(par_shapes_mesh*, float minarea); + +// Dereference the entire index buffer and replace the point list. +// This creates an inefficient structure, but is useful for drawing facets. +// If create_indices is true, a trivial "0 1 2 3..." index buffer is generated. +void par_shapes_unweld(par_shapes_mesh* mesh, bool create_indices); + +// Merge colocated verts, build a new index buffer, and return the +// optimized mesh. Epsilon is the maximum distance to consider when +// welding vertices. The mapping argument can be null, or a pointer to +// npoints integers, which gets filled with the mapping from old vertex +// indices to new indices. +par_shapes_mesh* par_shapes_weld(par_shapes_mesh const*, float epsilon, + PAR_SHAPES_T* mapping); + +// Compute smooth normals by averaging adjacent facet normals. +void par_shapes_compute_normals(par_shapes_mesh* m); + +// Global Config --------------------------------------------------------------- + +void par_shapes_set_epsilon_welded_normals(float epsilon); +void par_shapes_set_epsilon_degenerate_sphere(float epsilon); + +// Advanced -------------------------------------------------------------------- + +void par_shapes__compute_welded_normals(par_shapes_mesh* m); +void par_shapes__connect(par_shapes_mesh* scene, par_shapes_mesh* cylinder, + int slices); + +#ifndef PAR_PI +#define PAR_PI (3.14159265359) +#define PAR_MIN(a, b) (a > b ? b : a) +#define PAR_MAX(a, b) (a > b ? a : b) +#define PAR_CLAMP(v, lo, hi) PAR_MAX(lo, PAR_MIN(hi, v)) +#define PAR_SWAP(T, A, B) { T tmp = B; B = A; A = tmp; } +#define PAR_SQR(a) ((a) * (a)) +#endif + +#ifndef PAR_MALLOC +#define PAR_MALLOC(T, N) ((T*) malloc(N * sizeof(T))) +#define PAR_CALLOC(T, N) ((T*) calloc(N * sizeof(T), 1)) +#define PAR_REALLOC(T, BUF, N) ((T*) realloc(BUF, sizeof(T) * (N))) +#define PAR_FREE(BUF) free(BUF) +#endif + +#ifdef __cplusplus +} +#endif + +// ----------------------------------------------------------------------------- +// END PUBLIC API +// ----------------------------------------------------------------------------- + +#ifdef PAR_SHAPES_IMPLEMENTATION +#include +#include +#include +#include +#include +#include +#include + +static float par_shapes__epsilon_welded_normals = 0.001; +static float par_shapes__epsilon_degenerate_sphere = 0.0001; + +static void par_shapes__sphere(float const* uv, float* xyz, void*); +static void par_shapes__hemisphere(float const* uv, float* xyz, void*); +static void par_shapes__plane(float const* uv, float* xyz, void*); +static void par_shapes__klein(float const* uv, float* xyz, void*); +static void par_shapes__cylinder(float const* uv, float* xyz, void*); +static void par_shapes__cone(float const* uv, float* xyz, void*); +static void par_shapes__torus(float const* uv, float* xyz, void*); +static void par_shapes__trefoil(float const* uv, float* xyz, void*); + +struct osn_context; +static int par__simplex_noise(int64_t seed, struct osn_context** ctx); +static void par__simplex_noise_free(struct osn_context* ctx); +static double par__simplex_noise2(struct osn_context* ctx, double x, double y); + +static void par_shapes__copy3(float* result, float const* a) +{ + result[0] = a[0]; + result[1] = a[1]; + result[2] = a[2]; +} + +static float par_shapes__dot3(float const* a, float const* b) +{ + return b[0] * a[0] + b[1] * a[1] + b[2] * a[2]; +} + +static void par_shapes__transform3(float* p, float const* x, float const* y, + float const* z) +{ + float px = par_shapes__dot3(p, x); + float py = par_shapes__dot3(p, y); + float pz = par_shapes__dot3(p, z); + p[0] = px; + p[1] = py; + p[2] = pz; +} + +static void par_shapes__cross3(float* result, float const* a, float const* b) +{ + float x = (a[1] * b[2]) - (a[2] * b[1]); + float y = (a[2] * b[0]) - (a[0] * b[2]); + float z = (a[0] * b[1]) - (a[1] * b[0]); + result[0] = x; + result[1] = y; + result[2] = z; +} + +static void par_shapes__mix3(float* d, float const* a, float const* b, float t) +{ + float x = b[0] * t + a[0] * (1 - t); + float y = b[1] * t + a[1] * (1 - t); + float z = b[2] * t + a[2] * (1 - t); + d[0] = x; + d[1] = y; + d[2] = z; +} + +static void par_shapes__scale3(float* result, float a) +{ + result[0] *= a; + result[1] *= a; + result[2] *= a; +} + +static void par_shapes__normalize3(float* v) +{ + float lsqr = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]); + if (lsqr > 0) { + par_shapes__scale3(v, 1.0f / lsqr); + } +} + +static void par_shapes__subtract3(float* result, float const* a) +{ + result[0] -= a[0]; + result[1] -= a[1]; + result[2] -= a[2]; +} + +static void par_shapes__add3(float* result, float const* a) +{ + result[0] += a[0]; + result[1] += a[1]; + result[2] += a[2]; +} + +static float par_shapes__sqrdist3(float const* a, float const* b) +{ + float dx = a[0] - b[0]; + float dy = a[1] - b[1]; + float dz = a[2] - b[2]; + return dx * dx + dy * dy + dz * dz; +} + +void par_shapes__compute_welded_normals(par_shapes_mesh* m) +{ + const float epsilon = par_shapes__epsilon_welded_normals; + m->normals = PAR_MALLOC(float, m->npoints * 3); + PAR_SHAPES_T* weldmap = PAR_MALLOC(PAR_SHAPES_T, m->npoints); + par_shapes_mesh* welded = par_shapes_weld(m, epsilon, weldmap); + par_shapes_compute_normals(welded); + float* pdst = m->normals; + for (int i = 0; i < m->npoints; i++, pdst += 3) { + int d = weldmap[i]; + float const* pnormal = welded->normals + d * 3; + pdst[0] = pnormal[0]; + pdst[1] = pnormal[1]; + pdst[2] = pnormal[2]; + } + PAR_FREE(weldmap); + par_shapes_free_mesh(welded); +} + +par_shapes_mesh* par_shapes_create_cylinder(int slices, int stacks) +{ + if (slices < 3 || stacks < 1) { + return 0; + } + return par_shapes_create_parametric(par_shapes__cylinder, slices, + stacks, 0); +} + +par_shapes_mesh* par_shapes_create_cone(int slices, int stacks) +{ + if (slices < 3 || stacks < 1) { + return 0; + } + return par_shapes_create_parametric(par_shapes__cone, slices, + stacks, 0); +} + +par_shapes_mesh* par_shapes_create_parametric_disk(int slices, int stacks) +{ + par_shapes_mesh* m = par_shapes_create_cone(slices, stacks); + if (m) { + par_shapes_scale(m, 1.0f, 1.0f, 0.0f); + } + return m; +} + +par_shapes_mesh* par_shapes_create_parametric_sphere(int slices, int stacks) +{ + if (slices < 3 || stacks < 3) { + return 0; + } + par_shapes_mesh* m = par_shapes_create_parametric(par_shapes__sphere, + slices, stacks, 0); + par_shapes_remove_degenerate(m, par_shapes__epsilon_degenerate_sphere); + return m; +} + +par_shapes_mesh* par_shapes_create_hemisphere(int slices, int stacks) +{ + if (slices < 3 || stacks < 3) { + return 0; + } + par_shapes_mesh* m = par_shapes_create_parametric(par_shapes__hemisphere, + slices, stacks, 0); + par_shapes_remove_degenerate(m, par_shapes__epsilon_degenerate_sphere); + return m; +} + +par_shapes_mesh* par_shapes_create_torus(int slices, int stacks, float radius) +{ + if (slices < 3 || stacks < 3) { + return 0; + } + assert(radius <= 1.0 && "Use smaller radius to avoid self-intersection."); + assert(radius >= 0.1 && "Use larger radius to avoid self-intersection."); + void* userdata = (void*) &radius; + return par_shapes_create_parametric(par_shapes__torus, slices, + stacks, userdata); +} + +par_shapes_mesh* par_shapes_create_klein_bottle(int slices, int stacks) +{ + if (slices < 3 || stacks < 3) { + return 0; + } + par_shapes_mesh* mesh = par_shapes_create_parametric( + par_shapes__klein, slices, stacks, 0); + int face = 0; + for (int stack = 0; stack < stacks; stack++) { + for (int slice = 0; slice < slices; slice++, face += 2) { + if (stack < 27 * stacks / 32) { + par_shapes_invert(mesh, face, 2); + } + } + } + par_shapes__compute_welded_normals(mesh); + return mesh; +} + +par_shapes_mesh* par_shapes_create_trefoil_knot(int slices, int stacks, + float radius) +{ + if (slices < 3 || stacks < 3) { + return 0; + } + assert(radius <= 3.0 && "Use smaller radius to avoid self-intersection."); + assert(radius >= 0.5 && "Use larger radius to avoid self-intersection."); + void* userdata = (void*) &radius; + return par_shapes_create_parametric(par_shapes__trefoil, slices, + stacks, userdata); +} + +par_shapes_mesh* par_shapes_create_plane(int slices, int stacks) +{ + if (slices < 1 || stacks < 1) { + return 0; + } + return par_shapes_create_parametric(par_shapes__plane, slices, + stacks, 0); +} + +par_shapes_mesh* par_shapes_create_parametric(par_shapes_fn fn, + int slices, int stacks, void* userdata) +{ + par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); + + // Generate verts. + mesh->npoints = (slices + 1) * (stacks + 1); + mesh->points = PAR_CALLOC(float, 3 * mesh->npoints); + float uv[2]; + float xyz[3]; + float* points = mesh->points; + for (int stack = 0; stack < stacks + 1; stack++) { + uv[0] = (float) stack / stacks; + for (int slice = 0; slice < slices + 1; slice++) { + uv[1] = (float) slice / slices; + fn(uv, xyz, userdata); + *points++ = xyz[0]; + *points++ = xyz[1]; + *points++ = xyz[2]; + } + } + + // Generate texture coordinates. + mesh->tcoords = PAR_CALLOC(float, 2 * mesh->npoints); + float* uvs = mesh->tcoords; + for (int stack = 0; stack < stacks + 1; stack++) { + uv[0] = (float) stack / stacks; + for (int slice = 0; slice < slices + 1; slice++) { + uv[1] = (float) slice / slices; + *uvs++ = uv[0]; + *uvs++ = uv[1]; + } + } + + // Generate faces. + mesh->ntriangles = 2 * slices * stacks; + mesh->triangles = PAR_CALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); + int v = 0; + PAR_SHAPES_T* face = mesh->triangles; + for (int stack = 0; stack < stacks; stack++) { + for (int slice = 0; slice < slices; slice++) { + int next = slice + 1; + *face++ = v + slice + slices + 1; + *face++ = v + next; + *face++ = v + slice; + *face++ = v + slice + slices + 1; + *face++ = v + next + slices + 1; + *face++ = v + next; + } + v += slices + 1; + } + + par_shapes__compute_welded_normals(mesh); + return mesh; +} + +void par_shapes_free_mesh(par_shapes_mesh* mesh) +{ + PAR_FREE(mesh->points); + PAR_FREE(mesh->triangles); + PAR_FREE(mesh->normals); + PAR_FREE(mesh->tcoords); + PAR_FREE(mesh); +} + +void par_shapes_export(par_shapes_mesh const* mesh, char const* filename) +{ + FILE* objfile = fopen(filename, "wt"); + float const* points = mesh->points; + float const* tcoords = mesh->tcoords; + float const* norms = mesh->normals; + PAR_SHAPES_T const* indices = mesh->triangles; + if (tcoords && norms) { + for (int nvert = 0; nvert < mesh->npoints; nvert++) { + fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); + fprintf(objfile, "vt %f %f\n", tcoords[0], tcoords[1]); + fprintf(objfile, "vn %f %f %f\n", norms[0], norms[1], norms[2]); + points += 3; + norms += 3; + tcoords += 2; + } + for (int nface = 0; nface < mesh->ntriangles; nface++) { + int a = 1 + *indices++; + int b = 1 + *indices++; + int c = 1 + *indices++; + fprintf(objfile, "f %d/%d/%d %d/%d/%d %d/%d/%d\n", + a, a, a, b, b, b, c, c, c); + } + } else if (norms) { + for (int nvert = 0; nvert < mesh->npoints; nvert++) { + fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); + fprintf(objfile, "vn %f %f %f\n", norms[0], norms[1], norms[2]); + points += 3; + norms += 3; + } + for (int nface = 0; nface < mesh->ntriangles; nface++) { + int a = 1 + *indices++; + int b = 1 + *indices++; + int c = 1 + *indices++; + fprintf(objfile, "f %d//%d %d//%d %d//%d\n", a, a, b, b, c, c); + } + } else if (tcoords) { + for (int nvert = 0; nvert < mesh->npoints; nvert++) { + fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); + fprintf(objfile, "vt %f %f\n", tcoords[0], tcoords[1]); + points += 3; + tcoords += 2; + } + for (int nface = 0; nface < mesh->ntriangles; nface++) { + int a = 1 + *indices++; + int b = 1 + *indices++; + int c = 1 + *indices++; + fprintf(objfile, "f %d/%d %d/%d %d/%d\n", a, a, b, b, c, c); + } + } else { + for (int nvert = 0; nvert < mesh->npoints; nvert++) { + fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); + points += 3; + } + for (int nface = 0; nface < mesh->ntriangles; nface++) { + int a = 1 + *indices++; + int b = 1 + *indices++; + int c = 1 + *indices++; + fprintf(objfile, "f %d %d %d\n", a, b, c); + } + } + fclose(objfile); +} + +static void par_shapes__sphere(float const* uv, float* xyz, void* userdata) +{ + float phi = uv[0] * PAR_PI; + float theta = uv[1] * 2 * PAR_PI; + xyz[0] = cosf(theta) * sinf(phi); + xyz[1] = sinf(theta) * sinf(phi); + xyz[2] = cosf(phi); +} + +static void par_shapes__hemisphere(float const* uv, float* xyz, void* userdata) +{ + float phi = uv[0] * PAR_PI; + float theta = uv[1] * PAR_PI; + xyz[0] = cosf(theta) * sinf(phi); + xyz[1] = sinf(theta) * sinf(phi); + xyz[2] = cosf(phi); +} + +static void par_shapes__plane(float const* uv, float* xyz, void* userdata) +{ + xyz[0] = uv[0]; + xyz[1] = uv[1]; + xyz[2] = 0; +} + +static void par_shapes__klein(float const* uv, float* xyz, void* userdata) +{ + float u = uv[0] * PAR_PI; + float v = uv[1] * 2 * PAR_PI; + u = u * 2; + if (u < PAR_PI) { + xyz[0] = 3 * cosf(u) * (1 + sinf(u)) + (2 * (1 - cosf(u) / 2)) * + cosf(u) * cosf(v); + xyz[2] = -8 * sinf(u) - 2 * (1 - cosf(u) / 2) * sinf(u) * cosf(v); + } else { + xyz[0] = 3 * cosf(u) * (1 + sinf(u)) + (2 * (1 - cosf(u) / 2)) * + cosf(v + PAR_PI); + xyz[2] = -8 * sinf(u); + } + xyz[1] = -2 * (1 - cosf(u) / 2) * sinf(v); +} + +static void par_shapes__cylinder(float const* uv, float* xyz, void* userdata) +{ + float theta = uv[1] * 2 * PAR_PI; + xyz[0] = sinf(theta); + xyz[1] = cosf(theta); + xyz[2] = uv[0]; +} + +static void par_shapes__cone(float const* uv, float* xyz, void* userdata) +{ + float r = 1.0f - uv[0]; + float theta = uv[1] * 2 * PAR_PI; + xyz[0] = r * sinf(theta); + xyz[1] = r * cosf(theta); + xyz[2] = uv[0]; +} + +static void par_shapes__torus(float const* uv, float* xyz, void* userdata) +{ + float major = 1; + float minor = *((float*) userdata); + float theta = uv[0] * 2 * PAR_PI; + float phi = uv[1] * 2 * PAR_PI; + float beta = major + minor * cosf(phi); + xyz[0] = cosf(theta) * beta; + xyz[1] = sinf(theta) * beta; + xyz[2] = sinf(phi) * minor; +} + +static void par_shapes__trefoil(float const* uv, float* xyz, void* userdata) +{ + float minor = *((float*) userdata); + const float a = 0.5f; + const float b = 0.3f; + const float c = 0.5f; + const float d = minor * 0.1f; + const float u = (1 - uv[0]) * 4 * PAR_PI; + const float v = uv[1] * 2 * PAR_PI; + const float r = a + b * cos(1.5f * u); + const float x = r * cos(u); + const float y = r * sin(u); + const float z = c * sin(1.5f * u); + float q[3]; + q[0] = + -1.5f * b * sin(1.5f * u) * cos(u) - (a + b * cos(1.5f * u)) * sin(u); + q[1] = + -1.5f * b * sin(1.5f * u) * sin(u) + (a + b * cos(1.5f * u)) * cos(u); + q[2] = 1.5f * c * cos(1.5f * u); + par_shapes__normalize3(q); + float qvn[3] = {q[1], -q[0], 0}; + par_shapes__normalize3(qvn); + float ww[3]; + par_shapes__cross3(ww, q, qvn); + xyz[0] = x + d * (qvn[0] * cos(v) + ww[0] * sin(v)); + xyz[1] = y + d * (qvn[1] * cos(v) + ww[1] * sin(v)); + xyz[2] = z + d * ww[2] * sin(v); +} + +void par_shapes_set_epsilon_welded_normals(float epsilon) { + par_shapes__epsilon_welded_normals = epsilon; +} + +void par_shapes_set_epsilon_degenerate_sphere(float epsilon) { + par_shapes__epsilon_degenerate_sphere = epsilon; +} + +void par_shapes_merge(par_shapes_mesh* dst, par_shapes_mesh const* src) +{ + PAR_SHAPES_T offset = dst->npoints; + int npoints = dst->npoints + src->npoints; + int vecsize = sizeof(float) * 3; + dst->points = PAR_REALLOC(float, dst->points, 3 * npoints); + memcpy(dst->points + 3 * dst->npoints, src->points, vecsize * src->npoints); + dst->npoints = npoints; + if (src->normals || dst->normals) { + dst->normals = PAR_REALLOC(float, dst->normals, 3 * npoints); + if (src->normals) { + memcpy(dst->normals + 3 * offset, src->normals, + vecsize * src->npoints); + } + } + if (src->tcoords || dst->tcoords) { + int uvsize = sizeof(float) * 2; + dst->tcoords = PAR_REALLOC(float, dst->tcoords, 2 * npoints); + if (src->tcoords) { + memcpy(dst->tcoords + 2 * offset, src->tcoords, + uvsize * src->npoints); + } + } + int ntriangles = dst->ntriangles + src->ntriangles; + dst->triangles = PAR_REALLOC(PAR_SHAPES_T, dst->triangles, 3 * ntriangles); + PAR_SHAPES_T* ptriangles = dst->triangles + 3 * dst->ntriangles; + PAR_SHAPES_T const* striangles = src->triangles; + for (int i = 0; i < src->ntriangles; i++) { + *ptriangles++ = offset + *striangles++; + *ptriangles++ = offset + *striangles++; + *ptriangles++ = offset + *striangles++; + } + dst->ntriangles = ntriangles; +} + +par_shapes_mesh* par_shapes_create_disk(float radius, int slices, + float const* center, float const* normal) +{ + par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); + mesh->npoints = slices + 1; + mesh->points = PAR_MALLOC(float, 3 * mesh->npoints); + float* points = mesh->points; + *points++ = 0; + *points++ = 0; + *points++ = 0; + for (int i = 0; i < slices; i++) { + float theta = i * PAR_PI * 2 / slices; + *points++ = radius * cos(theta); + *points++ = radius * sin(theta); + *points++ = 0; + } + float nnormal[3] = {normal[0], normal[1], normal[2]}; + par_shapes__normalize3(nnormal); + mesh->normals = PAR_MALLOC(float, 3 * mesh->npoints); + float* norms = mesh->normals; + for (int i = 0; i < mesh->npoints; i++) { + *norms++ = nnormal[0]; + *norms++ = nnormal[1]; + *norms++ = nnormal[2]; + } + mesh->ntriangles = slices; + mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); + PAR_SHAPES_T* triangles = mesh->triangles; + for (int i = 0; i < slices; i++) { + *triangles++ = 0; + *triangles++ = 1 + i; + *triangles++ = 1 + (i + 1) % slices; + } + float k[3] = {0, 0, -1}; + float axis[3]; + par_shapes__cross3(axis, nnormal, k); + par_shapes__normalize3(axis); + par_shapes_rotate(mesh, acos(nnormal[2]), axis); + par_shapes_translate(mesh, center[0], center[1], center[2]); + return mesh; +} + +par_shapes_mesh* par_shapes_create_empty() +{ + return PAR_CALLOC(par_shapes_mesh, 1); +} + +void par_shapes_translate(par_shapes_mesh* m, float x, float y, float z) +{ + float* points = m->points; + for (int i = 0; i < m->npoints; i++) { + *points++ += x; + *points++ += y; + *points++ += z; + } +} + +void par_shapes_rotate(par_shapes_mesh* mesh, float radians, float const* axis) +{ + float s = sinf(radians); + float c = cosf(radians); + float x = axis[0]; + float y = axis[1]; + float z = axis[2]; + float xy = x * y; + float yz = y * z; + float zx = z * x; + float oneMinusC = 1.0f - c; + float col0[3] = { + (((x * x) * oneMinusC) + c), + ((xy * oneMinusC) + (z * s)), ((zx * oneMinusC) - (y * s)) + }; + float col1[3] = { + ((xy * oneMinusC) - (z * s)), + (((y * y) * oneMinusC) + c), ((yz * oneMinusC) + (x * s)) + }; + float col2[3] = { + ((zx * oneMinusC) + (y * s)), + ((yz * oneMinusC) - (x * s)), (((z * z) * oneMinusC) + c) + }; + float* p = mesh->points; + for (int i = 0; i < mesh->npoints; i++, p += 3) { + float x = col0[0] * p[0] + col1[0] * p[1] + col2[0] * p[2]; + float y = col0[1] * p[0] + col1[1] * p[1] + col2[1] * p[2]; + float z = col0[2] * p[0] + col1[2] * p[1] + col2[2] * p[2]; + p[0] = x; + p[1] = y; + p[2] = z; + } + float* n = mesh->normals; + if (n) { + for (int i = 0; i < mesh->npoints; i++, n += 3) { + float x = col0[0] * n[0] + col1[0] * n[1] + col2[0] * n[2]; + float y = col0[1] * n[0] + col1[1] * n[1] + col2[1] * n[2]; + float z = col0[2] * n[0] + col1[2] * n[1] + col2[2] * n[2]; + n[0] = x; + n[1] = y; + n[2] = z; + } + } +} + +void par_shapes_scale(par_shapes_mesh* m, float x, float y, float z) +{ + float* points = m->points; + for (int i = 0; i < m->npoints; i++) { + *points++ *= x; + *points++ *= y; + *points++ *= z; + } + float* n = m->normals; + if (n && !(x == y && y == z)) { + bool x_zero = x == 0; + bool y_zero = y == 0; + bool z_zero = z == 0; + if (!x_zero && !y_zero && !z_zero) { + x = 1.0f / x; + y = 1.0f / y; + z = 1.0f / z; + } else { + x = x_zero && !y_zero && !z_zero; + y = y_zero && !x_zero && !z_zero; + z = z_zero && !x_zero && !y_zero; + } + for (int i = 0; i < m->npoints; i++, n += 3) { + n[0] *= x; + n[1] *= y; + n[2] *= z; + par_shapes__normalize3(n); + } + } +} + +void par_shapes_merge_and_free(par_shapes_mesh* dst, par_shapes_mesh* src) +{ + par_shapes_merge(dst, src); + par_shapes_free_mesh(src); +} + +void par_shapes_compute_aabb(par_shapes_mesh const* m, float* aabb) +{ + float* points = m->points; + aabb[0] = aabb[3] = points[0]; + aabb[1] = aabb[4] = points[1]; + aabb[2] = aabb[5] = points[2]; + points += 3; + for (int i = 1; i < m->npoints; i++, points += 3) { + aabb[0] = PAR_MIN(points[0], aabb[0]); + aabb[1] = PAR_MIN(points[1], aabb[1]); + aabb[2] = PAR_MIN(points[2], aabb[2]); + aabb[3] = PAR_MAX(points[0], aabb[3]); + aabb[4] = PAR_MAX(points[1], aabb[4]); + aabb[5] = PAR_MAX(points[2], aabb[5]); + } +} + +void par_shapes_invert(par_shapes_mesh* m, int face, int nfaces) +{ + nfaces = nfaces ? nfaces : m->ntriangles; + PAR_SHAPES_T* tri = m->triangles + face * 3; + for (int i = 0; i < nfaces; i++) { + PAR_SWAP(PAR_SHAPES_T, tri[0], tri[2]); + tri += 3; + } +} + +par_shapes_mesh* par_shapes_create_icosahedron() +{ + static float verts[] = { + 0.000, 0.000, 1.000, + 0.894, 0.000, 0.447, + 0.276, 0.851, 0.447, + -0.724, 0.526, 0.447, + -0.724, -0.526, 0.447, + 0.276, -0.851, 0.447, + 0.724, 0.526, -0.447, + -0.276, 0.851, -0.447, + -0.894, 0.000, -0.447, + -0.276, -0.851, -0.447, + 0.724, -0.526, -0.447, + 0.000, 0.000, -1.000 + }; + static PAR_SHAPES_T faces[] = { + 0,1,2, + 0,2,3, + 0,3,4, + 0,4,5, + 0,5,1, + 7,6,11, + 8,7,11, + 9,8,11, + 10,9,11, + 6,10,11, + 6,2,1, + 7,3,2, + 8,4,3, + 9,5,4, + 10,1,5, + 6,7,2, + 7,8,3, + 8,9,4, + 9,10,5, + 10,6,1 + }; + par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); + mesh->npoints = sizeof(verts) / sizeof(verts[0]) / 3; + mesh->points = PAR_MALLOC(float, sizeof(verts) / 4); + memcpy(mesh->points, verts, sizeof(verts)); + mesh->ntriangles = sizeof(faces) / sizeof(faces[0]) / 3; + mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, sizeof(faces) / 2); + memcpy(mesh->triangles, faces, sizeof(faces)); + return mesh; +} + +par_shapes_mesh* par_shapes_create_dodecahedron() +{ + static float verts[20 * 3] = { + 0.607, 0.000, 0.795, + 0.188, 0.577, 0.795, + -0.491, 0.357, 0.795, + -0.491, -0.357, 0.795, + 0.188, -0.577, 0.795, + 0.982, 0.000, 0.188, + 0.304, 0.934, 0.188, + -0.795, 0.577, 0.188, + -0.795, -0.577, 0.188, + 0.304, -0.934, 0.188, + 0.795, 0.577, -0.188, + -0.304, 0.934, -0.188, + -0.982, 0.000, -0.188, + -0.304, -0.934, -0.188, + 0.795, -0.577, -0.188, + 0.491, 0.357, -0.795, + -0.188, 0.577, -0.795, + -0.607, 0.000, -0.795, + -0.188, -0.577, -0.795, + 0.491, -0.357, -0.795, + }; + static PAR_SHAPES_T pentagons[12 * 5] = { + 0,1,2,3,4, + 5,10,6,1,0, + 6,11,7,2,1, + 7,12,8,3,2, + 8,13,9,4,3, + 9,14,5,0,4, + 15,16,11,6,10, + 16,17,12,7,11, + 17,18,13,8,12, + 18,19,14,9,13, + 19,15,10,5,14, + 19,18,17,16,15 + }; + int npentagons = sizeof(pentagons) / sizeof(pentagons[0]) / 5; + par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); + int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; + mesh->npoints = ncorners; + mesh->points = PAR_MALLOC(float, mesh->npoints * 3); + memcpy(mesh->points, verts, sizeof(verts)); + PAR_SHAPES_T const* pentagon = pentagons; + mesh->ntriangles = npentagons * 3; + mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); + PAR_SHAPES_T* tris = mesh->triangles; + for (int p = 0; p < npentagons; p++, pentagon += 5) { + *tris++ = pentagon[0]; + *tris++ = pentagon[1]; + *tris++ = pentagon[2]; + *tris++ = pentagon[0]; + *tris++ = pentagon[2]; + *tris++ = pentagon[3]; + *tris++ = pentagon[0]; + *tris++ = pentagon[3]; + *tris++ = pentagon[4]; + } + return mesh; +} + +par_shapes_mesh* par_shapes_create_octahedron() +{ + static float verts[6 * 3] = { + 0.000, 0.000, 1.000, + 1.000, 0.000, 0.000, + 0.000, 1.000, 0.000, + -1.000, 0.000, 0.000, + 0.000, -1.000, 0.000, + 0.000, 0.000, -1.000 + }; + static PAR_SHAPES_T triangles[8 * 3] = { + 0,1,2, + 0,2,3, + 0,3,4, + 0,4,1, + 2,1,5, + 3,2,5, + 4,3,5, + 1,4,5, + }; + int ntris = sizeof(triangles) / sizeof(triangles[0]) / 3; + par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); + int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; + mesh->npoints = ncorners; + mesh->points = PAR_MALLOC(float, mesh->npoints * 3); + memcpy(mesh->points, verts, sizeof(verts)); + PAR_SHAPES_T const* triangle = triangles; + mesh->ntriangles = ntris; + mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); + PAR_SHAPES_T* tris = mesh->triangles; + for (int p = 0; p < ntris; p++) { + *tris++ = *triangle++; + *tris++ = *triangle++; + *tris++ = *triangle++; + } + return mesh; +} + +par_shapes_mesh* par_shapes_create_tetrahedron() +{ + static float verts[4 * 3] = { + 0.000, 1.333, 0, + 0.943, 0, 0, + -0.471, 0, 0.816, + -0.471, 0, -0.816, + }; + static PAR_SHAPES_T triangles[4 * 3] = { + 2,1,0, + 3,2,0, + 1,3,0, + 1,2,3, + }; + int ntris = sizeof(triangles) / sizeof(triangles[0]) / 3; + par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); + int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; + mesh->npoints = ncorners; + mesh->points = PAR_MALLOC(float, mesh->npoints * 3); + memcpy(mesh->points, verts, sizeof(verts)); + PAR_SHAPES_T const* triangle = triangles; + mesh->ntriangles = ntris; + mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); + PAR_SHAPES_T* tris = mesh->triangles; + for (int p = 0; p < ntris; p++) { + *tris++ = *triangle++; + *tris++ = *triangle++; + *tris++ = *triangle++; + } + return mesh; +} + +par_shapes_mesh* par_shapes_create_cube() +{ + static float verts[8 * 3] = { + 0, 0, 0, // 0 + 0, 1, 0, // 1 + 1, 1, 0, // 2 + 1, 0, 0, // 3 + 0, 0, 1, // 4 + 0, 1, 1, // 5 + 1, 1, 1, // 6 + 1, 0, 1, // 7 + }; + static PAR_SHAPES_T quads[6 * 4] = { + 7,6,5,4, // front + 0,1,2,3, // back + 6,7,3,2, // right + 5,6,2,1, // top + 4,5,1,0, // left + 7,4,0,3, // bottom + }; + int nquads = sizeof(quads) / sizeof(quads[0]) / 4; + par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); + int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; + mesh->npoints = ncorners; + mesh->points = PAR_MALLOC(float, mesh->npoints * 3); + memcpy(mesh->points, verts, sizeof(verts)); + PAR_SHAPES_T const* quad = quads; + mesh->ntriangles = nquads * 2; + mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); + PAR_SHAPES_T* tris = mesh->triangles; + for (int p = 0; p < nquads; p++, quad += 4) { + *tris++ = quad[0]; + *tris++ = quad[1]; + *tris++ = quad[2]; + *tris++ = quad[2]; + *tris++ = quad[3]; + *tris++ = quad[0]; + } + return mesh; +} + +typedef struct { + char* cmd; + char* arg; +} par_shapes__command; + +typedef struct { + char const* name; + int weight; + int ncommands; + par_shapes__command* commands; +} par_shapes__rule; + +typedef struct { + int pc; + float position[3]; + float scale[3]; + par_shapes_mesh* orientation; + par_shapes__rule* rule; +} par_shapes__stackframe; + +static par_shapes__rule* par_shapes__pick_rule(const char* name, + par_shapes__rule* rules, int nrules) +{ + par_shapes__rule* rule = 0; + int total = 0; + for (int i = 0; i < nrules; i++) { + rule = rules + i; + if (!strcmp(rule->name, name)) { + total += rule->weight; + } + } + float r = (float) rand() / RAND_MAX; + float t = 0; + for (int i = 0; i < nrules; i++) { + rule = rules + i; + if (!strcmp(rule->name, name)) { + t += (float) rule->weight / total; + if (t >= r) { + return rule; + } + } + } + return rule; +} + +static par_shapes_mesh* par_shapes__create_turtle() +{ + const float xaxis[] = {1, 0, 0}; + const float yaxis[] = {0, 1, 0}; + const float zaxis[] = {0, 0, 1}; + par_shapes_mesh* turtle = PAR_CALLOC(par_shapes_mesh, 1); + turtle->npoints = 3; + turtle->points = PAR_CALLOC(float, turtle->npoints * 3); + par_shapes__copy3(turtle->points + 0, xaxis); + par_shapes__copy3(turtle->points + 3, yaxis); + par_shapes__copy3(turtle->points + 6, zaxis); + return turtle; +} + +static par_shapes_mesh* par_shapes__apply_turtle(par_shapes_mesh* mesh, + par_shapes_mesh* turtle, float const* pos, float const* scale) +{ + par_shapes_mesh* m = par_shapes_clone(mesh, 0); + for (int p = 0; p < m->npoints; p++) { + float* pt = m->points + p * 3; + pt[0] *= scale[0]; + pt[1] *= scale[1]; + pt[2] *= scale[2]; + par_shapes__transform3(pt, + turtle->points + 0, turtle->points + 3, turtle->points + 6); + pt[0] += pos[0]; + pt[1] += pos[1]; + pt[2] += pos[2]; + } + return m; +} + +void par_shapes__connect(par_shapes_mesh* scene, par_shapes_mesh* cylinder, + int slices) +{ + int stacks = 1; + int npoints = (slices + 1) * (stacks + 1); + assert(scene->npoints >= npoints && "Cannot connect to empty scene."); + + // Create the new point list. + npoints = scene->npoints + (slices + 1); + float* points = PAR_MALLOC(float, npoints * 3); + memcpy(points, scene->points, sizeof(float) * scene->npoints * 3); + float* newpts = points + scene->npoints * 3; + memcpy(newpts, cylinder->points + (slices + 1) * 3, + sizeof(float) * (slices + 1) * 3); + PAR_FREE(scene->points); + scene->points = points; + + // Create the new triangle list. + int ntriangles = scene->ntriangles + 2 * slices * stacks; + PAR_SHAPES_T* triangles = PAR_MALLOC(PAR_SHAPES_T, ntriangles * 3); + memcpy(triangles, scene->triangles, + sizeof(PAR_SHAPES_T) * scene->ntriangles * 3); + int v = scene->npoints - (slices + 1); + PAR_SHAPES_T* face = triangles + scene->ntriangles * 3; + for (int stack = 0; stack < stacks; stack++) { + for (int slice = 0; slice < slices; slice++) { + int next = slice + 1; + *face++ = v + slice + slices + 1; + *face++ = v + next; + *face++ = v + slice; + *face++ = v + slice + slices + 1; + *face++ = v + next + slices + 1; + *face++ = v + next; + } + v += slices + 1; + } + PAR_FREE(scene->triangles); + scene->triangles = triangles; + + scene->npoints = npoints; + scene->ntriangles = ntriangles; +} + +par_shapes_mesh* par_shapes_create_lsystem(char const* text, int slices, + int maxdepth) +{ + char* program; + program = PAR_MALLOC(char, strlen(text) + 1); + + // The first pass counts the number of rules and commands. + strcpy(program, text); + char *cmd = strtok(program, " "); + int nrules = 1; + int ncommands = 0; + while (cmd) { + char *arg = strtok(0, " "); + if (!arg) { + puts("lsystem error: unexpected end of program."); + break; + } + if (!strcmp(cmd, "rule")) { + nrules++; + } else { + ncommands++; + } + cmd = strtok(0, " "); + } + + // Allocate space. + par_shapes__rule* rules = PAR_MALLOC(par_shapes__rule, nrules); + par_shapes__command* commands = PAR_MALLOC(par_shapes__command, ncommands); + + // Initialize the entry rule. + par_shapes__rule* current_rule = &rules[0]; + par_shapes__command* current_command = &commands[0]; + current_rule->name = "entry"; + current_rule->weight = 1; + current_rule->ncommands = 0; + current_rule->commands = current_command; + + // The second pass fills in the structures. + strcpy(program, text); + cmd = strtok(program, " "); + while (cmd) { + char *arg = strtok(0, " "); + if (!strcmp(cmd, "rule")) { + current_rule++; + + // Split the argument into a rule name and weight. + char* dot = strchr(arg, '.'); + if (dot) { + current_rule->weight = atoi(dot + 1); + *dot = 0; + } else { + current_rule->weight = 1; + } + + current_rule->name = arg; + current_rule->ncommands = 0; + current_rule->commands = current_command; + } else { + current_rule->ncommands++; + current_command->cmd = cmd; + current_command->arg = arg; + current_command++; + } + cmd = strtok(0, " "); + } + + // For testing purposes, dump out the parsed program. + #ifdef TEST_PARSE + for (int i = 0; i < nrules; i++) { + par_shapes__rule rule = rules[i]; + printf("rule %s.%d\n", rule.name, rule.weight); + for (int c = 0; c < rule.ncommands; c++) { + par_shapes__command cmd = rule.commands[c]; + printf("\t%s %s\n", cmd.cmd, cmd.arg); + } + } + #endif + + // Instantiate the aggregated shape and the template shapes. + par_shapes_mesh* scene = PAR_CALLOC(par_shapes_mesh, 1); + par_shapes_mesh* tube = par_shapes_create_cylinder(slices, 1); + par_shapes_mesh* turtle = par_shapes__create_turtle(); + + // We're not attempting to support texture coordinates and normals + // with L-systems, so remove them from the template shape. + PAR_FREE(tube->normals); + PAR_FREE(tube->tcoords); + tube->normals = 0; + tube->tcoords = 0; + + const float xaxis[] = {1, 0, 0}; + const float yaxis[] = {0, 1, 0}; + const float zaxis[] = {0, 0, 1}; + const float units[] = {1, 1, 1}; + + // Execute the L-system program until the stack size is 0. + par_shapes__stackframe* stack = + PAR_CALLOC(par_shapes__stackframe, maxdepth); + int stackptr = 0; + stack[0].orientation = turtle; + stack[0].rule = &rules[0]; + par_shapes__copy3(stack[0].scale, units); + while (stackptr >= 0) { + par_shapes__stackframe* frame = &stack[stackptr]; + par_shapes__rule* rule = frame->rule; + par_shapes_mesh* turtle = frame->orientation; + float* position = frame->position; + float* scale = frame->scale; + if (frame->pc >= rule->ncommands) { + par_shapes_free_mesh(turtle); + stackptr--; + continue; + } + + par_shapes__command* cmd = rule->commands + (frame->pc++); + #ifdef DUMP_TRACE + printf("%5s %5s %5s:%d %03d\n", cmd->cmd, cmd->arg, rule->name, + frame->pc - 1, stackptr); + #endif + + float value; + if (!strcmp(cmd->cmd, "shape")) { + par_shapes_mesh* m = par_shapes__apply_turtle(tube, turtle, + position, scale); + if (!strcmp(cmd->arg, "connect")) { + par_shapes__connect(scene, m, slices); + } else { + par_shapes_merge(scene, m); + } + par_shapes_free_mesh(m); + } else if (!strcmp(cmd->cmd, "call") && stackptr < maxdepth - 1) { + rule = par_shapes__pick_rule(cmd->arg, rules, nrules); + frame = &stack[++stackptr]; + frame->rule = rule; + frame->orientation = par_shapes_clone(turtle, 0); + frame->pc = 0; + par_shapes__copy3(frame->scale, scale); + par_shapes__copy3(frame->position, position); + continue; + } else { + value = atof(cmd->arg); + if (!strcmp(cmd->cmd, "rx")) { + par_shapes_rotate(turtle, value * PAR_PI / 180.0, xaxis); + } else if (!strcmp(cmd->cmd, "ry")) { + par_shapes_rotate(turtle, value * PAR_PI / 180.0, yaxis); + } else if (!strcmp(cmd->cmd, "rz")) { + par_shapes_rotate(turtle, value * PAR_PI / 180.0, zaxis); + } else if (!strcmp(cmd->cmd, "tx")) { + float vec[3] = {value, 0, 0}; + float t[3] = { + par_shapes__dot3(turtle->points + 0, vec), + par_shapes__dot3(turtle->points + 3, vec), + par_shapes__dot3(turtle->points + 6, vec) + }; + par_shapes__add3(position, t); + } else if (!strcmp(cmd->cmd, "ty")) { + float vec[3] = {0, value, 0}; + float t[3] = { + par_shapes__dot3(turtle->points + 0, vec), + par_shapes__dot3(turtle->points + 3, vec), + par_shapes__dot3(turtle->points + 6, vec) + }; + par_shapes__add3(position, t); + } else if (!strcmp(cmd->cmd, "tz")) { + float vec[3] = {0, 0, value}; + float t[3] = { + par_shapes__dot3(turtle->points + 0, vec), + par_shapes__dot3(turtle->points + 3, vec), + par_shapes__dot3(turtle->points + 6, vec) + }; + par_shapes__add3(position, t); + } else if (!strcmp(cmd->cmd, "sx")) { + scale[0] *= value; + } else if (!strcmp(cmd->cmd, "sy")) { + scale[1] *= value; + } else if (!strcmp(cmd->cmd, "sz")) { + scale[2] *= value; + } else if (!strcmp(cmd->cmd, "sa")) { + scale[0] *= value; + scale[1] *= value; + scale[2] *= value; + } + } + } + PAR_FREE(stack); + PAR_FREE(program); + PAR_FREE(rules); + PAR_FREE(commands); + return scene; +} + +void par_shapes_unweld(par_shapes_mesh* mesh, bool create_indices) +{ + int npoints = mesh->ntriangles * 3; + float* points = PAR_MALLOC(float, 3 * npoints); + float* dst = points; + PAR_SHAPES_T const* index = mesh->triangles; + for (int i = 0; i < npoints; i++) { + float const* src = mesh->points + 3 * (*index++); + *dst++ = src[0]; + *dst++ = src[1]; + *dst++ = src[2]; + } + PAR_FREE(mesh->points); + mesh->points = points; + mesh->npoints = npoints; + if (create_indices) { + PAR_SHAPES_T* tris = PAR_MALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); + PAR_SHAPES_T* index = tris; + for (int i = 0; i < mesh->ntriangles * 3; i++) { + *index++ = i; + } + PAR_FREE(mesh->triangles); + mesh->triangles = tris; + } +} + +void par_shapes_compute_normals(par_shapes_mesh* m) +{ + PAR_FREE(m->normals); + m->normals = PAR_CALLOC(float, m->npoints * 3); + PAR_SHAPES_T const* triangle = m->triangles; + float next[3], prev[3], cp[3]; + for (int f = 0; f < m->ntriangles; f++, triangle += 3) { + float const* pa = m->points + 3 * triangle[0]; + float const* pb = m->points + 3 * triangle[1]; + float const* pc = m->points + 3 * triangle[2]; + par_shapes__copy3(next, pb); + par_shapes__subtract3(next, pa); + par_shapes__copy3(prev, pc); + par_shapes__subtract3(prev, pa); + par_shapes__cross3(cp, next, prev); + par_shapes__add3(m->normals + 3 * triangle[0], cp); + par_shapes__copy3(next, pc); + par_shapes__subtract3(next, pb); + par_shapes__copy3(prev, pa); + par_shapes__subtract3(prev, pb); + par_shapes__cross3(cp, next, prev); + par_shapes__add3(m->normals + 3 * triangle[1], cp); + par_shapes__copy3(next, pa); + par_shapes__subtract3(next, pc); + par_shapes__copy3(prev, pb); + par_shapes__subtract3(prev, pc); + par_shapes__cross3(cp, next, prev); + par_shapes__add3(m->normals + 3 * triangle[2], cp); + } + float* normal = m->normals; + for (int p = 0; p < m->npoints; p++, normal += 3) { + par_shapes__normalize3(normal); + } +} + +static void par_shapes__subdivide(par_shapes_mesh* mesh) +{ + assert(mesh->npoints == mesh->ntriangles * 3 && "Must be unwelded."); + int ntriangles = mesh->ntriangles * 4; + int npoints = ntriangles * 3; + float* points = PAR_CALLOC(float, npoints * 3); + float* dpoint = points; + float const* spoint = mesh->points; + for (int t = 0; t < mesh->ntriangles; t++, spoint += 9, dpoint += 3) { + float const* a = spoint; + float const* b = spoint + 3; + float const* c = spoint + 6; + float const* p0 = dpoint; + float const* p1 = dpoint + 3; + float const* p2 = dpoint + 6; + par_shapes__mix3(dpoint, a, b, 0.5); + par_shapes__mix3(dpoint += 3, b, c, 0.5); + par_shapes__mix3(dpoint += 3, a, c, 0.5); + par_shapes__add3(dpoint += 3, a); + par_shapes__add3(dpoint += 3, p0); + par_shapes__add3(dpoint += 3, p2); + par_shapes__add3(dpoint += 3, p0); + par_shapes__add3(dpoint += 3, b); + par_shapes__add3(dpoint += 3, p1); + par_shapes__add3(dpoint += 3, p2); + par_shapes__add3(dpoint += 3, p1); + par_shapes__add3(dpoint += 3, c); + } + PAR_FREE(mesh->points); + mesh->points = points; + mesh->npoints = npoints; + mesh->ntriangles = ntriangles; +} + +par_shapes_mesh* par_shapes_create_subdivided_sphere(int nsubd) +{ + par_shapes_mesh* mesh = par_shapes_create_icosahedron(); + par_shapes_unweld(mesh, false); + PAR_FREE(mesh->triangles); + mesh->triangles = 0; + while (nsubd--) { + par_shapes__subdivide(mesh); + } + for (int i = 0; i < mesh->npoints; i++) { + par_shapes__normalize3(mesh->points + i * 3); + } + mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); + for (int i = 0; i < mesh->ntriangles * 3; i++) { + mesh->triangles[i] = i; + } + par_shapes_mesh* tmp = mesh; + mesh = par_shapes_weld(mesh, 0.01, 0); + par_shapes_free_mesh(tmp); + par_shapes_compute_normals(mesh); + return mesh; +} + +par_shapes_mesh* par_shapes_create_rock(int seed, int subd) +{ + par_shapes_mesh* mesh = par_shapes_create_subdivided_sphere(subd); + struct osn_context* ctx; + par__simplex_noise(seed, &ctx); + for (int p = 0; p < mesh->npoints; p++) { + float* pt = mesh->points + p * 3; + float a = 0.25, f = 1.0; + double n = a * par__simplex_noise2(ctx, f * pt[0], f * pt[2]); + a *= 0.5; f *= 2; + n += a * par__simplex_noise2(ctx, f * pt[0], f * pt[2]); + pt[0] *= 1 + 2 * n; + pt[1] *= 1 + n; + pt[2] *= 1 + 2 * n; + if (pt[1] < 0) { + pt[1] = -pow(-pt[1], 0.5) / 2; + } + } + par__simplex_noise_free(ctx); + par_shapes_compute_normals(mesh); + return mesh; +} + +par_shapes_mesh* par_shapes_clone(par_shapes_mesh const* mesh, + par_shapes_mesh* clone) +{ + if (!clone) { + clone = PAR_CALLOC(par_shapes_mesh, 1); + } + clone->npoints = mesh->npoints; + clone->points = PAR_REALLOC(float, clone->points, 3 * clone->npoints); + memcpy(clone->points, mesh->points, sizeof(float) * 3 * clone->npoints); + clone->ntriangles = mesh->ntriangles; + clone->triangles = PAR_REALLOC(PAR_SHAPES_T, clone->triangles, 3 * + clone->ntriangles); + memcpy(clone->triangles, mesh->triangles, + sizeof(PAR_SHAPES_T) * 3 * clone->ntriangles); + if (mesh->normals) { + clone->normals = PAR_REALLOC(float, clone->normals, 3 * clone->npoints); + memcpy(clone->normals, mesh->normals, + sizeof(float) * 3 * clone->npoints); + } + if (mesh->tcoords) { + clone->tcoords = PAR_REALLOC(float, clone->tcoords, 2 * clone->npoints); + memcpy(clone->tcoords, mesh->tcoords, + sizeof(float) * 2 * clone->npoints); + } + return clone; +} + +static struct { + float const* points; + int gridsize; +} par_shapes__sort_context; + +static int par_shapes__cmp1(const void *arg0, const void *arg1) +{ + const int g = par_shapes__sort_context.gridsize; + + // Convert arg0 into a flattened grid index. + PAR_SHAPES_T d0 = *(const PAR_SHAPES_T*) arg0; + float const* p0 = par_shapes__sort_context.points + d0 * 3; + int i0 = (int) p0[0]; + int j0 = (int) p0[1]; + int k0 = (int) p0[2]; + int index0 = i0 + g * j0 + g * g * k0; + + // Convert arg1 into a flattened grid index. + PAR_SHAPES_T d1 = *(const PAR_SHAPES_T*) arg1; + float const* p1 = par_shapes__sort_context.points + d1 * 3; + int i1 = (int) p1[0]; + int j1 = (int) p1[1]; + int k1 = (int) p1[2]; + int index1 = i1 + g * j1 + g * g * k1; + + // Return the ordering. + if (index0 < index1) return -1; + if (index0 > index1) return 1; + return 0; +} + +static void par_shapes__sort_points(par_shapes_mesh* mesh, int gridsize, + PAR_SHAPES_T* sortmap) +{ + // Run qsort over a list of consecutive integers that get deferenced + // within the comparator function; this creates a reorder mapping. + for (int i = 0; i < mesh->npoints; i++) { + sortmap[i] = i; + } + par_shapes__sort_context.gridsize = gridsize; + par_shapes__sort_context.points = mesh->points; + qsort(sortmap, mesh->npoints, sizeof(PAR_SHAPES_T), par_shapes__cmp1); + + // Apply the reorder mapping to the XYZ coordinate data. + float* newpts = PAR_MALLOC(float, mesh->npoints * 3); + PAR_SHAPES_T* invmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); + float* dstpt = newpts; + for (int i = 0; i < mesh->npoints; i++) { + invmap[sortmap[i]] = i; + float const* srcpt = mesh->points + 3 * sortmap[i]; + *dstpt++ = *srcpt++; + *dstpt++ = *srcpt++; + *dstpt++ = *srcpt++; + } + PAR_FREE(mesh->points); + mesh->points = newpts; + + // Apply the inverse reorder mapping to the triangle indices. + PAR_SHAPES_T* newinds = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); + PAR_SHAPES_T* dstind = newinds; + PAR_SHAPES_T const* srcind = mesh->triangles; + for (int i = 0; i < mesh->ntriangles * 3; i++) { + *dstind++ = invmap[*srcind++]; + } + PAR_FREE(mesh->triangles); + mesh->triangles = newinds; + + // Cleanup. + memcpy(sortmap, invmap, sizeof(PAR_SHAPES_T) * mesh->npoints); + PAR_FREE(invmap); +} + +static void par_shapes__weld_points(par_shapes_mesh* mesh, int gridsize, + float epsilon, PAR_SHAPES_T* weldmap) +{ + // Each bin contains a "pointer" (really an index) to its first point. + // We add 1 because 0 is reserved to mean that the bin is empty. + // Since the points are spatially sorted, there's no need to store + // a point count in each bin. + PAR_SHAPES_T* bins = PAR_CALLOC(PAR_SHAPES_T, + gridsize * gridsize * gridsize); + int prev_binindex = -1; + for (int p = 0; p < mesh->npoints; p++) { + float const* pt = mesh->points + p * 3; + int i = (int) pt[0]; + int j = (int) pt[1]; + int k = (int) pt[2]; + int this_binindex = i + gridsize * j + gridsize * gridsize * k; + if (this_binindex != prev_binindex) { + bins[this_binindex] = 1 + p; + } + prev_binindex = this_binindex; + } + + // Examine all bins that intersect the epsilon-sized cube centered at each + // point, and check for colocated points within those bins. + float const* pt = mesh->points; + int nremoved = 0; + for (int p = 0; p < mesh->npoints; p++, pt += 3) { + + // Skip if this point has already been welded. + if (weldmap[p] != p) { + continue; + } + + // Build a list of bins that intersect the epsilon-sized cube. + int nearby[8]; + int nbins = 0; + int minp[3], maxp[3]; + for (int c = 0; c < 3; c++) { + minp[c] = (int) (pt[c] - epsilon); + maxp[c] = (int) (pt[c] + epsilon); + } + for (int i = minp[0]; i <= maxp[0]; i++) { + for (int j = minp[1]; j <= maxp[1]; j++) { + for (int k = minp[2]; k <= maxp[2]; k++) { + int binindex = i + gridsize * j + gridsize * gridsize * k; + PAR_SHAPES_T binvalue = *(bins + binindex); + if (binvalue > 0) { + if (nbins == 8) { + printf("Epsilon value is too large.\n"); + break; + } + nearby[nbins++] = binindex; + } + } + } + } + + // Check for colocated points in each nearby bin. + for (int b = 0; b < nbins; b++) { + int binindex = nearby[b]; + PAR_SHAPES_T binvalue = bins[binindex]; + PAR_SHAPES_T nindex = binvalue - 1; + assert(nindex < mesh->npoints); + while (true) { + + // If this isn't "self" and it's colocated, then weld it! + if (nindex != p && weldmap[nindex] == nindex) { + float const* thatpt = mesh->points + nindex * 3; + float dist2 = par_shapes__sqrdist3(thatpt, pt); + if (dist2 < epsilon) { + weldmap[nindex] = p; + nremoved++; + } + } + + // Advance to the next point if possible. + if (++nindex >= mesh->npoints) { + break; + } + + // If the next point is outside the bin, then we're done. + float const* nextpt = mesh->points + nindex * 3; + int i = (int) nextpt[0]; + int j = (int) nextpt[1]; + int k = (int) nextpt[2]; + int nextbinindex = i + gridsize * j + gridsize * gridsize * k; + if (nextbinindex != binindex) { + break; + } + } + } + } + PAR_FREE(bins); + + // Apply the weldmap to the vertices. + int npoints = mesh->npoints - nremoved; + float* newpts = PAR_MALLOC(float, 3 * npoints); + float* dst = newpts; + PAR_SHAPES_T* condensed_map = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); + PAR_SHAPES_T* cmap = condensed_map; + float const* src = mesh->points; + int ci = 0; + for (int p = 0; p < mesh->npoints; p++, src += 3) { + if (weldmap[p] == p) { + *dst++ = src[0]; + *dst++ = src[1]; + *dst++ = src[2]; + *cmap++ = ci++; + } else { + *cmap++ = condensed_map[weldmap[p]]; + } + } + assert(ci == npoints); + PAR_FREE(mesh->points); + memcpy(weldmap, condensed_map, mesh->npoints * sizeof(PAR_SHAPES_T)); + PAR_FREE(condensed_map); + mesh->points = newpts; + mesh->npoints = npoints; + + // Apply the weldmap to the triangle indices and skip the degenerates. + PAR_SHAPES_T const* tsrc = mesh->triangles; + PAR_SHAPES_T* tdst = mesh->triangles; + int ntriangles = 0; + for (int i = 0; i < mesh->ntriangles; i++, tsrc += 3) { + PAR_SHAPES_T a = weldmap[tsrc[0]]; + PAR_SHAPES_T b = weldmap[tsrc[1]]; + PAR_SHAPES_T c = weldmap[tsrc[2]]; + if (a != b && a != c && b != c) { + assert(a < mesh->npoints); + assert(b < mesh->npoints); + assert(c < mesh->npoints); + *tdst++ = a; + *tdst++ = b; + *tdst++ = c; + ntriangles++; + } + } + mesh->ntriangles = ntriangles; +} + +par_shapes_mesh* par_shapes_weld(par_shapes_mesh const* mesh, float epsilon, + PAR_SHAPES_T* weldmap) +{ + par_shapes_mesh* clone = par_shapes_clone(mesh, 0); + float aabb[6]; + int gridsize = 20; + float maxcell = gridsize - 1; + par_shapes_compute_aabb(clone, aabb); + float scale[3] = { + aabb[3] == aabb[0] ? 1.0f : maxcell / (aabb[3] - aabb[0]), + aabb[4] == aabb[1] ? 1.0f : maxcell / (aabb[4] - aabb[1]), + aabb[5] == aabb[2] ? 1.0f : maxcell / (aabb[5] - aabb[2]), + }; + par_shapes_translate(clone, -aabb[0], -aabb[1], -aabb[2]); + par_shapes_scale(clone, scale[0], scale[1], scale[2]); + PAR_SHAPES_T* sortmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); + par_shapes__sort_points(clone, gridsize, sortmap); + bool owner = false; + if (!weldmap) { + owner = true; + weldmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); + } + for (int i = 0; i < mesh->npoints; i++) { + weldmap[i] = i; + } + par_shapes__weld_points(clone, gridsize, epsilon, weldmap); + if (owner) { + PAR_FREE(weldmap); + } else { + PAR_SHAPES_T* newmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); + for (int i = 0; i < mesh->npoints; i++) { + newmap[i] = weldmap[sortmap[i]]; + } + memcpy(weldmap, newmap, sizeof(PAR_SHAPES_T) * mesh->npoints); + PAR_FREE(newmap); + } + PAR_FREE(sortmap); + par_shapes_scale(clone, 1.0 / scale[0], 1.0 / scale[1], 1.0 / scale[2]); + par_shapes_translate(clone, aabb[0], aabb[1], aabb[2]); + return clone; +} + +// ----------------------------------------------------------------------------- +// BEGIN OPEN SIMPLEX NOISE +// ----------------------------------------------------------------------------- + +#define STRETCH_CONSTANT_2D (-0.211324865405187) // (1 / sqrt(2 + 1) - 1 ) / 2; +#define SQUISH_CONSTANT_2D (0.366025403784439) // (sqrt(2 + 1) -1) / 2; +#define STRETCH_CONSTANT_3D (-1.0 / 6.0) // (1 / sqrt(3 + 1) - 1) / 3; +#define SQUISH_CONSTANT_3D (1.0 / 3.0) // (sqrt(3+1)-1)/3; +#define STRETCH_CONSTANT_4D (-0.138196601125011) // (1 / sqrt(4 + 1) - 1) / 4; +#define SQUISH_CONSTANT_4D (0.309016994374947) // (sqrt(4 + 1) - 1) / 4; + +#define NORM_CONSTANT_2D (47.0) +#define NORM_CONSTANT_3D (103.0) +#define NORM_CONSTANT_4D (30.0) + +#define DEFAULT_SEED (0LL) + +struct osn_context { + int16_t* perm; + int16_t* permGradIndex3D; +}; + +#define ARRAYSIZE(x) (sizeof((x)) / sizeof((x)[0])) + +/* + * Gradients for 2D. They approximate the directions to the + * vertices of an octagon from the center. + */ +static const int8_t gradients2D[] = { + 5, 2, 2, 5, -5, 2, -2, 5, 5, -2, 2, -5, -5, -2, -2, -5, +}; + +/* + * Gradients for 3D. They approximate the directions to the + * vertices of a rhombicuboctahedron from the center, skewed so + * that the triangular and square facets can be inscribed inside + * circles of the same radius. + */ +static const signed char gradients3D[] = { + -11, 4, 4, -4, 11, 4, -4, 4, 11, 11, 4, 4, 4, 11, 4, 4, 4, 11, -11, -4, 4, + -4, -11, 4, -4, -4, 11, 11, -4, 4, 4, -11, 4, 4, -4, 11, -11, 4, -4, -4, 11, + -4, -4, 4, -11, 11, 4, -4, 4, 11, -4, 4, 4, -11, -11, -4, -4, -4, -11, -4, + -4, -4, -11, 11, -4, -4, 4, -11, -4, 4, -4, -11, +}; + +/* + * Gradients for 4D. They approximate the directions to the + * vertices of a disprismatotesseractihexadecachoron from the center, + * skewed so that the tetrahedral and cubic facets can be inscribed inside + * spheres of the same radius. + */ +static const signed char gradients4D[] = { + 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, -3, 1, 1, 1, -1, 3, 1, 1, + -1, 1, 3, 1, -1, 1, 1, 3, 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, + 3, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, 3, 1, -1, 1, 1, + 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, + 1, -1, 1, -1, 3, 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, -3, + -1, -1, 1, -1, -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, 3, 1, 1, -1, 1, 3, + 1, -1, 1, 1, 3, -1, 1, 1, 1, -3, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, -1, + -1, 1, 1, -3, 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, -3, + -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, 3, 1, -1, -1, 1, 3, + -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, + -1, -1, 1, -1, -3, 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, + -3, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, +}; + +static double extrapolate2( + struct osn_context* ctx, int xsb, int ysb, double dx, double dy) +{ + int16_t* perm = ctx->perm; + int index = perm[(perm[xsb & 0xFF] + ysb) & 0xFF] & 0x0E; + return gradients2D[index] * dx + gradients2D[index + 1] * dy; +} + +static inline int fastFloor(double x) +{ + int xi = (int) x; + return x < xi ? xi - 1 : xi; +} + +static int allocate_perm(struct osn_context* ctx, int nperm, int ngrad) +{ + PAR_FREE(ctx->perm); + PAR_FREE(ctx->permGradIndex3D); + ctx->perm = PAR_MALLOC(int16_t, nperm); + if (!ctx->perm) { + return -ENOMEM; + } + ctx->permGradIndex3D = PAR_MALLOC(int16_t, ngrad); + if (!ctx->permGradIndex3D) { + PAR_FREE(ctx->perm); + return -ENOMEM; + } + return 0; +} + +static int par__simplex_noise(int64_t seed, struct osn_context** ctx) +{ + int rc; + int16_t source[256]; + int i; + int16_t* perm; + int16_t* permGradIndex3D; + *ctx = PAR_MALLOC(struct osn_context, 1); + if (!(*ctx)) { + return -ENOMEM; + } + (*ctx)->perm = NULL; + (*ctx)->permGradIndex3D = NULL; + rc = allocate_perm(*ctx, 256, 256); + if (rc) { + PAR_FREE(*ctx); + return rc; + } + perm = (*ctx)->perm; + permGradIndex3D = (*ctx)->permGradIndex3D; + for (i = 0; i < 256; i++) { + source[i] = (int16_t) i; + } + seed = seed * 6364136223846793005LL + 1442695040888963407LL; + seed = seed * 6364136223846793005LL + 1442695040888963407LL; + seed = seed * 6364136223846793005LL + 1442695040888963407LL; + for (i = 255; i >= 0; i--) { + seed = seed * 6364136223846793005LL + 1442695040888963407LL; + int r = (int) ((seed + 31) % (i + 1)); + if (r < 0) + r += (i + 1); + perm[i] = source[r]; + permGradIndex3D[i] = + (short) ((perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3); + source[r] = source[i]; + } + return 0; +} + +static void par__simplex_noise_free(struct osn_context* ctx) +{ + if (!ctx) + return; + if (ctx->perm) { + PAR_FREE(ctx->perm); + ctx->perm = NULL; + } + if (ctx->permGradIndex3D) { + PAR_FREE(ctx->permGradIndex3D); + ctx->permGradIndex3D = NULL; + } + PAR_FREE(ctx); +} + +static double par__simplex_noise2(struct osn_context* ctx, double x, double y) +{ + // Place input coordinates onto grid. + double stretchOffset = (x + y) * STRETCH_CONSTANT_2D; + double xs = x + stretchOffset; + double ys = y + stretchOffset; + + // Floor to get grid coordinates of rhombus (stretched square) super-cell + // origin. + int xsb = fastFloor(xs); + int ysb = fastFloor(ys); + + // Skew out to get actual coordinates of rhombus origin. We'll need these + // later. + double squishOffset = (xsb + ysb) * SQUISH_CONSTANT_2D; + double xb = xsb + squishOffset; + double yb = ysb + squishOffset; + + // Compute grid coordinates relative to rhombus origin. + double xins = xs - xsb; + double yins = ys - ysb; + + // Sum those together to get a value that determines which region we're in. + double inSum = xins + yins; + + // Positions relative to origin point. + double dx0 = x - xb; + double dy0 = y - yb; + + // We'll be defining these inside the next block and using them afterwards. + double dx_ext, dy_ext; + int xsv_ext, ysv_ext; + + double value = 0; + + // Contribution (1,0) + double dx1 = dx0 - 1 - SQUISH_CONSTANT_2D; + double dy1 = dy0 - 0 - SQUISH_CONSTANT_2D; + double attn1 = 2 - dx1 * dx1 - dy1 * dy1; + if (attn1 > 0) { + attn1 *= attn1; + value += attn1 * attn1 * extrapolate2(ctx, xsb + 1, ysb + 0, dx1, dy1); + } + + // Contribution (0,1) + double dx2 = dx0 - 0 - SQUISH_CONSTANT_2D; + double dy2 = dy0 - 1 - SQUISH_CONSTANT_2D; + double attn2 = 2 - dx2 * dx2 - dy2 * dy2; + if (attn2 > 0) { + attn2 *= attn2; + value += attn2 * attn2 * extrapolate2(ctx, xsb + 0, ysb + 1, dx2, dy2); + } + + if (inSum <= 1) { // We're inside the triangle (2-Simplex) at (0,0) + double zins = 1 - inSum; + if (zins > xins || zins > yins) { + if (xins > yins) { + xsv_ext = xsb + 1; + ysv_ext = ysb - 1; + dx_ext = dx0 - 1; + dy_ext = dy0 + 1; + } else { + xsv_ext = xsb - 1; + ysv_ext = ysb + 1; + dx_ext = dx0 + 1; + dy_ext = dy0 - 1; + } + } else { //(1,0) and (0,1) are the closest two vertices. + xsv_ext = xsb + 1; + ysv_ext = ysb + 1; + dx_ext = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; + dy_ext = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; + } + } else { // We're inside the triangle (2-Simplex) at (1,1) + double zins = 2 - inSum; + if (zins < xins || zins < yins) { + if (xins > yins) { + xsv_ext = xsb + 2; + ysv_ext = ysb + 0; + dx_ext = dx0 - 2 - 2 * SQUISH_CONSTANT_2D; + dy_ext = dy0 + 0 - 2 * SQUISH_CONSTANT_2D; + } else { + xsv_ext = xsb + 0; + ysv_ext = ysb + 2; + dx_ext = dx0 + 0 - 2 * SQUISH_CONSTANT_2D; + dy_ext = dy0 - 2 - 2 * SQUISH_CONSTANT_2D; + } + } else { //(1,0) and (0,1) are the closest two vertices. + dx_ext = dx0; + dy_ext = dy0; + xsv_ext = xsb; + ysv_ext = ysb; + } + xsb += 1; + ysb += 1; + dx0 = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; + dy0 = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; + } + + // Contribution (0,0) or (1,1) + double attn0 = 2 - dx0 * dx0 - dy0 * dy0; + if (attn0 > 0) { + attn0 *= attn0; + value += attn0 * attn0 * extrapolate2(ctx, xsb, ysb, dx0, dy0); + } + + // Extra Vertex + double attn_ext = 2 - dx_ext * dx_ext - dy_ext * dy_ext; + if (attn_ext > 0) { + attn_ext *= attn_ext; + value += attn_ext * attn_ext * + extrapolate2(ctx, xsv_ext, ysv_ext, dx_ext, dy_ext); + } + + return value / NORM_CONSTANT_2D; +} + +void par_shapes_remove_degenerate(par_shapes_mesh* mesh, float mintriarea) +{ + int ntriangles = 0; + PAR_SHAPES_T* triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); + PAR_SHAPES_T* dst = triangles; + PAR_SHAPES_T const* src = mesh->triangles; + float next[3], prev[3], cp[3]; + float mincplen2 = (mintriarea * 2) * (mintriarea * 2); + for (int f = 0; f < mesh->ntriangles; f++, src += 3) { + float const* pa = mesh->points + 3 * src[0]; + float const* pb = mesh->points + 3 * src[1]; + float const* pc = mesh->points + 3 * src[2]; + par_shapes__copy3(next, pb); + par_shapes__subtract3(next, pa); + par_shapes__copy3(prev, pc); + par_shapes__subtract3(prev, pa); + par_shapes__cross3(cp, next, prev); + float cplen2 = par_shapes__dot3(cp, cp); + if (cplen2 >= mincplen2) { + *dst++ = src[0]; + *dst++ = src[1]; + *dst++ = src[2]; + ntriangles++; + } + } + mesh->ntriangles = ntriangles; + PAR_FREE(mesh->triangles); + mesh->triangles = triangles; +} + +#endif // PAR_SHAPES_IMPLEMENTATION +#endif // PAR_SHAPES_H + +// par_shapes is distributed under the MIT license: +// +// Copyright (c) 2019 Philip Rideout +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. -- cgit v1.2.3