aboutsummaryrefslogtreecommitdiffstats
path: root/src/small3dlib.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/small3dlib.h2743
1 files changed, 0 insertions, 2743 deletions
diff --git a/src/small3dlib.h b/src/small3dlib.h
deleted file mode 100644
index 3ba5589..0000000
--- a/src/small3dlib.h
+++ /dev/null
@@ -1,2743 +0,0 @@
-#ifndef SMALL3DLIB_H
-#define SMALL3DLIB_H
-
-/*
- Simple realtime 3D software rasterization renderer. It is fast, focused on
- resource-limited computers, located in a single C header file, with no
- dependencies, using only 32bit integer arithmetics.
-
- author: Miloslav Ciz
- license: CC0 1.0 (public domain)
- found at https://creativecommons.org/publicdomain/zero/1.0/
- + additional waiver of all IP
- version: 0.901d
-
- Before including the library, define S3L_PIXEL_FUNCTION to the name of the
- function you'll be using to draw single pixels (this function will be called
- by the library to render the frames). Also either init S3L_resolutionX and
- S3L_resolutionY or define S3L_RESOLUTION_X and S3L_RESOLUTION_Y.
-
- You'll also need to decide what rendering strategy and other settings you
- want to use, depending on your specific usecase. You may want to use a
- z-buffer (full or reduced, S3L_Z_BUFFER), sorted-drawing (S3L_SORT), or even
- none of these. See the description of the options in this file.
-
- The rendering itself is done with S3L_drawScene, usually preceded by
- S3L_newFrame (for clearing zBuffer etc.).
-
- The library is meant to be used in not so huge programs that use single
- translation unit and so includes both declarations and implementation at once.
- If you for some reason use multiple translation units (which include the
- library), you'll have to handle this yourself (e.g. create a wrapper, manually
- split the library into .c and .h etc.).
-
- --------------------
-
- This work's goal is to never be encumbered by any exclusive intellectual
- property rights. The work is therefore provided under CC0 1.0 + additional
- WAIVER OF ALL INTELLECTUAL PROPERTY RIGHTS that waives the rest of
- intellectual property rights not already waived by CC0 1.0. The WAIVER OF ALL
- INTELLECTUAL PROPERTY RGHTS is as follows:
-
- Each contributor to this work agrees that they waive any exclusive rights,
- including but not limited to copyright, patents, trademark, trade dress,
- industrial design, plant varieties and trade secrets, to any and all ideas,
- concepts, processes, discoveries, improvements and inventions conceived,
- discovered, made, designed, researched or developed by the contributor either
- solely or jointly with others, which relate to this work or result from this
- work. Should any waiver of such right be judged legally invalid or
- ineffective under applicable law, the contributor hereby grants to each
- affected person a royalty-free, non transferable, non sublicensable, non
- exclusive, irrevocable and unconditional license to this right.
-
- --------------------
-
- CONVENTIONS:
-
- This library should never draw pixels outside the specified screen
- boundaries, so you don't have to check this (that would cost CPU time)!
-
- You can safely assume that triangles are rasterized one by one and from top
- down, left to right (so you can utilize e.g. various caches), and if sorting
- is disabled the order of rasterization will be that specified in the scene
- structure and model arrays (of course, some triangles and models may be
- skipped due to culling etc.).
-
- Angles are in S3L_Units, a full angle (2 pi) is S3L_FRACTIONS_PER_UNITs.
-
- We use row vectors.
-
- In 3D space, a left-handed coord. system is used. One spatial unit is split
- into S3L_FRACTIONS_PER_UNIT fractions (fixed point arithmetic).
-
- y ^
- | _
- | /| z
- | /
- | /
- [0,0,0]-------> x
-
- Untransformed camera is placed at [0,0,0], looking forward along +z axis. The
- projection plane is centered at [0,0,0], stretrinch from
- -S3L_FRACTIONS_PER_UNIT to S3L_FRACTIONS_PER_UNIT horizontally (x),
- vertical size (y) depends on the aspect ratio (S3L_RESOLUTION_X and
- S3L_RESOLUTION_Y). Camera FOV is defined by focal length in S3L_Units.
-
- y ^
- | _
- | /| z
- ____|_/__
- | |/ |
- -----[0,0,0]-|-----> x
- |____|____|
- |
- |
-
- Rotations use Euler angles and are generally in the extrinsic Euler angles in
- ZXY order (by Z, then by X, then by Y). Positive rotation about an axis
- rotates CW (clock-wise) when looking in the direction of the axis.
-
- Coordinates of pixels on the screen start at the top left, from [0,0].
-
- There is NO subpixel accuracy (screen coordinates are only integer).
-
- Triangle rasterization rules are these (mostly same as OpenGL, D3D etc.):
-
- - Let's define:
- - left side:
- - not exactly horizontal, and on the left side of triangle
- - exactly horizontal and above the topmost
- (in other words: its normal points at least a little to the left or
- completely up)
- - right side: not left side
- - Pixel centers are at integer coordinates and triangle for drawing are
- specified with integer coordinates of pixel centers.
- - A pixel is rasterized:
- - if its center is inside the triangle OR
- - if its center is exactly on the triangle side which is left and at the
- same time is not on the side that's right (case of a triangle that's on
- a single line) OR
- - if its center is exactly on the triangle corner of sides neither of which
- is right.
-
- These rules imply among others:
-
- - Adjacent triangles don't have any overlapping pixels, nor gaps between.
- - Triangles of points that lie on a single line are NOT rasterized.
- - A single "long" triangle CAN be rasterized as isolated islands of pixels.
- - Transforming (e.g. mirroring, rotating by 90 degrees etc.) a result of
- rasterizing triangle A is NOT generally equal to applying the same
- transformation to triangle A first and then rasterizing it. Even the number
- of rasterized pixels is usually different.
- - If specifying a triangle with integer coordinates (which we are), then:
- - The bottom-most corner (or side) of a triangle is never rasterized
- (because it is connected to a right side).
- - The top-most corner can only be rasterized on completely horizontal side
- (otherwise it is connected to a right side).
- - Vertically middle corner is rasterized if and only if it is on the left
- of the triangle and at the same time is also not the bottom-most corner.
-*/
-
-#include <stdint.h>
-
-#ifdef S3L_RESOLUTION_X
-#ifdef S3L_RESOLUTION_Y
-#define S3L_MAX_PIXELS (S3L_RESOLUTION_X * S3L_RESOLUTION_Y)
-#endif
-#endif
-
-#ifndef S3L_RESOLUTION_X
-#ifndef S3L_MAX_PIXELS
-#error Dynamic resolution set (S3L_RESOLUTION_X not defined), but\
- S3L_MAX_PIXELS not defined!
-#endif
-
-uint16_t S3L_resolutionX = 512; /**< If a static resolution is not set with
- S3L_RESOLUTION_X, this variable can be
- used to change X resolution at runtime,
- in which case S3L_MAX_PIXELS has to be
- defined (to allocate zBuffer etc.)! */
-#define S3L_RESOLUTION_X S3L_resolutionX
-#endif
-
-#ifndef S3L_RESOLUTION_Y
-#ifndef S3L_MAX_PIXELS
-#error Dynamic resolution set (S3L_RESOLUTION_Y not defined), but\
- S3L_MAX_PIXELS not defined!
-#endif
-
-uint16_t S3L_resolutionY = 512; /**< Same as S3L_resolutionX, but for Y
- resolution. */
-#define S3L_RESOLUTION_Y S3L_resolutionY
-#endif
-
-#ifndef S3L_USE_WIDER_TYPES
-/** If true, the library will use wider data types which will largely supress
-many rendering bugs and imprecisions happening due to overflows, but this will
-also consumer more RAM and may potentially be slower on computers with smaller
-native integer. */
-
-#define S3L_USE_WIDER_TYPES 0
-#endif
-
-/** Units of measurement in 3D space. There is S3L_FRACTIONS_PER_UNIT in one
-spatial unit. By dividing the unit into fractions we effectively achieve a
-fixed point arithmetic. The number of fractions is a constant that serves as
-1.0 in floating point arithmetic (normalization etc.). */
-
-typedef
-#if S3L_USE_WIDER_TYPES
- int64_t
-#else
- int32_t
-#endif
- S3L_Unit;
-
-/** How many fractions a spatial unit is split into. This is NOT SUPPOSED TO
-BE REDEFINED, so rather don't do it (otherwise things may overflow etc.). */
-
-#define S3L_FRACTIONS_PER_UNIT 512
-
-typedef
-#if S3L_USE_WIDER_TYPES
- int32_t
-#else
- int16_t
-#endif
- S3L_ScreenCoord;
-
-typedef
-#if S3L_USE_WIDER_TYPES
- uint32_t
-#else
- uint16_t
-#endif
- S3L_Index;
-
-#ifndef S3L_NEAR_CROSS_STRATEGY
-/** Specifies how the library will handle triangles that partially cross the
-near plane. These are problematic and require special handling. Possible
-values:
-
- 0: Strictly cull any triangle crossing the near plane. This will make such
- triangles disappear. This is good for performance or models viewed only
- from at least small distance.
- 1: Forcefully push the vertices crossing near plane in front of it. This is
- a cheap technique that can be good enough for displaying simple
- environments on slow devices, but texturing and geometric artifacts/warps
- will appear.
- 2: Geometrically correct the triangles crossing the near plane. This may
- result in some triangles being subdivided into two and is a little more
- expensive, but the results will be geometrically correct, even though
- barycentric correction is not performed so texturing artifacts will
- appear. Can be ideal with S3L_FLAT.
- 3: Perform both geometrical and barycentric correction of triangle crossing
- the near plane. This is significantly more expensive but results in
- correct rendering. */
-
-#define S3L_NEAR_CROSS_STRATEGY 0
-#endif
-
-#ifndef S3L_FLAT
-/** If on, disables computation of per-pixel values such as barycentric
-coordinates and depth -- these will still be available but will be the same
-for the whole triangle. This can be used to create flat-shaded renders and
-will be a lot faster. With this option on you will probably want to use
-sorting instead of z-buffer. */
-
-#define S3L_FLAT 0
-#endif
-
-#if S3L_FLAT
-#define S3L_COMPUTE_DEPTH 0
-#define S3L_PERSPECTIVE_CORRECTION 0
-// don't disable z-buffer, it makes sense to use it with no sorting
-#endif
-
-#ifndef S3L_PERSPECTIVE_CORRECTION
-/** Specifies what type of perspective correction (PC) to use. Remember this
-is an expensive operation! Possible values:
-
-0: No perspective correction. Fastest, inaccurate from most angles.
-1: Per-pixel perspective correction, accurate but very expensive.
-2: Approximation (computing only at every S3L_PC_APPROX_LENGTHth pixel).
- Quake-style approximation is used, which only computes the PC after
- S3L_PC_APPROX_LENGTH pixels. This is reasonably accurate and fast. */
-
-#define S3L_PERSPECTIVE_CORRECTION 0
-#endif
-
-#ifndef S3L_PC_APPROX_LENGTH
-/** For S3L_PERSPECTIVE_CORRECTION == 2, this specifies after how many pixels
-PC is recomputed. Should be a power of two to keep up the performance.
-Smaller is nicer but slower. */
-
-#define S3L_PC_APPROX_LENGTH 32
-#endif
-
-#if S3L_PERSPECTIVE_CORRECTION
-#define S3L_COMPUTE_DEPTH 1 // PC inevitably computes depth, so enable it
-#endif
-
-#ifndef S3L_COMPUTE_DEPTH
-/** Whether to compute depth for each pixel (fragment). Some other options
-may turn this on automatically. If you don't need depth information, turning
-this off can save performance. Depth will still be accessible in
-S3L_PixelInfo, but will be constant -- equal to center point depth -- over
-the whole triangle. */
-#define S3L_COMPUTE_DEPTH 1
-#endif
-
-#ifndef S3L_Z_BUFFER
-/** What type of z-buffer (depth buffer) to use for visibility determination.
-Possible values:
-
-0: Don't use z-buffer. This saves a lot of memory, but visibility checking
- won't be pixel-accurate and has to mostly be done by other means (typically
- sorting).
-1: Use full z-buffer (of S3L_Units) for visibiltiy determination. This is the
- most accurate option (and also a fast one), but requires a big amount of
- memory.
-2: Use reduced-size z-buffer (of bytes). This is fast and somewhat accurate,
- but inaccuracies can occur and a considerable amount of memory is
- needed. */
-
-#define S3L_Z_BUFFER 0
-#endif
-
-#ifndef S3L_REDUCED_Z_BUFFER_GRANULARITY
-/** For S3L_Z_BUFFER == 2 this sets the reduced z-buffer granularity. */
-
-#define S3L_REDUCED_Z_BUFFER_GRANULARITY 5
-#endif
-
-#ifndef S3L_STENCIL_BUFFER
-/** Whether to use stencil buffer for drawing -- with this a pixel that would
-be resterized over an already rasterized pixel (within a frame) will be
-discarded. This is mostly for front-to-back sorted drawing. */
-
-#define S3L_STENCIL_BUFFER 0
-#endif
-
-#ifndef S3L_SORT
-/** Defines how to sort triangles before drawing a frame. This can be used to
-solve visibility in case z-buffer is not used, to prevent overwriting already
-rasterized pixels, implement transparency etc. Note that for simplicity and
-performance a relatively simple sorting is used which doesn't work completely
-correctly, so mistakes can occur (even the best sorting wouldn't be able to
-solve e.g. intersecting triangles). Note that sorting requires a bit of extra
-memory -- an array of the triangles to sort -- the size of this array limits
-the maximum number of triangles that can be drawn in a single frame
-(S3L_MAX_TRIANGES_DRAWN). Possible values:
-
-0: Don't sort triangles. This is fastest and doesn't use extra memory.
-1: Sort triangles from back to front. This can in most cases solve visibility
- without requiring almost any extra memory compared to z-buffer.
-2: Sort triangles from front to back. This can be faster than back to front
- because we prevent computing pixels that will be overwritten by nearer
- ones, but we need a 1b stencil buffer for this (enable S3L_STENCIL_BUFFER),
- so a bit more memory is needed. */
-
-#define S3L_SORT 0
-#endif
-
-#ifndef S3L_MAX_TRIANGES_DRAWN
-/** Maximum number of triangles that can be drawn in sorted modes. This
-affects the size of the cache used for triangle sorting. */
-
-#define S3L_MAX_TRIANGES_DRAWN 128
-#endif
-
-#ifndef S3L_NEAR
-/** Distance of the near clipping plane. Points in front or EXATLY ON this
-plane are considered outside the frustum. This must be >= 0. */
-
-#define S3L_NEAR (S3L_FRACTIONS_PER_UNIT / 4)
-#endif
-
-#if S3L_NEAR <= 0
-#define S3L_NEAR 1 // Can't be <= 0.
-#endif
-
-#ifndef S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE
-/** Affects the S3L_computeModelNormals function. See its description for
-details. */
-
-#define S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE 6
-#endif
-
-#ifndef S3L_FAST_LERP_QUALITY
-/** Quality (scaling) of SOME (stepped) linear interpolations. 0 will most
-likely be a tiny bit faster, but artifacts can occur for bigger tris, while
-higher values can fix this -- in theory all higher values will have the same
-speed (it is a shift value), but it mustn't be too high to prevent
-overflow. */
-
-#define S3L_FAST_LERP_QUALITY 11
-#endif
-
-/** Vector that consists of four scalars and can represent homogenous
- coordinates, but is generally also used as Vec3 and Vec2 for various
- purposes. */
-typedef struct {
- S3L_Unit x;
- S3L_Unit y;
- S3L_Unit z;
- S3L_Unit w;
-} S3L_Vec4;
-
-#define S3L_logVec4(v) \
- printf("Vec4: %d %d %d %d\n", ((v).x), ((v).y), ((v).z), ((v).w))
-
-static inline void S3L_vec4Init(S3L_Vec4* v);
-static inline void S3L_vec4Set(S3L_Vec4* v,
- S3L_Unit x,
- S3L_Unit y,
- S3L_Unit z,
- S3L_Unit w);
-static inline void S3L_vec3Add(S3L_Vec4* result, S3L_Vec4 added);
-static inline void S3L_vec3Sub(S3L_Vec4* result, S3L_Vec4 substracted);
-S3L_Unit S3L_vec3Length(S3L_Vec4 v);
-
-/** Normalizes Vec3. Note that this function tries to normalize correctly
- rather than quickly! If you need to normalize quickly, do it yourself in a
- way that best fits your case. */
-void S3L_vec3Normalize(S3L_Vec4* v);
-
-/** Like S3L_vec3Normalize, but doesn't perform any checks on the input vector,
- which is faster, but can be very innacurate or overflowing. You are supposed
- to provide a "nice" vector (not too big or small). */
-static inline void S3L_vec3NormalizeFast(S3L_Vec4* v);
-
-S3L_Unit S3L_vec2Length(S3L_Vec4 v);
-void S3L_vec3Cross(S3L_Vec4 a, S3L_Vec4 b, S3L_Vec4* result);
-static inline S3L_Unit S3L_vec3Dot(S3L_Vec4 a, S3L_Vec4 b);
-
-/** Computes a reflection direction (typically used e.g. for specular component
- in Phong illumination). The input vectors must be normalized. The result will
- be normalized as well. */
-void S3L_reflect(S3L_Vec4 toLight, S3L_Vec4 normal, S3L_Vec4* result);
-
-/** Determines the winding of a triangle, returns 1 (CW, clockwise), -1 (CCW,
- counterclockwise) or 0 (points lie on a single line). */
-static inline int8_t S3L_triangleWinding(S3L_ScreenCoord x0,
- S3L_ScreenCoord y0,
- S3L_ScreenCoord x1,
- S3L_ScreenCoord y1,
- S3L_ScreenCoord x2,
- S3L_ScreenCoord y2);
-
-typedef struct {
- S3L_Vec4 translation;
- S3L_Vec4 rotation; /**< Euler angles. Rortation is applied in this order:
- 1. z = by z (roll) CW looking along z+
- 2. x = by x (pitch) CW looking along x+
- 3. y = by y (yaw) CW looking along y+ */
- S3L_Vec4 scale;
-} S3L_Transform3D;
-
-#define S3L_logTransform3D(t) \
- printf("Transform3D: T = [%d %d %d], R = [%d %d %d], S = [%d %d %d]\n", \
- (t).translation.x, (t).translation.y, (t).translation.z, \
- (t).rotation.x, (t).rotation.y, (t).rotation.z, (t).scale.x, \
- (t).scale.y, (t).scale.z)
-
-static inline void S3L_transform3DInit(S3L_Transform3D* t);
-
-void S3L_lookAt(S3L_Vec4 pointTo, S3L_Transform3D* t);
-
-void S3L_transform3DSet(S3L_Unit tx,
- S3L_Unit ty,
- S3L_Unit tz,
- S3L_Unit rx,
- S3L_Unit ry,
- S3L_Unit rz,
- S3L_Unit sx,
- S3L_Unit sy,
- S3L_Unit sz,
- S3L_Transform3D* t);
-
-/** Converts rotation transformation to three direction vectors of given length
- (any one can be NULL, in which case it won't be computed). */
-void S3L_rotationToDirections(S3L_Vec4 rotation,
- S3L_Unit length,
- S3L_Vec4* forw,
- S3L_Vec4* right,
- S3L_Vec4* up);
-
-/** 4x4 matrix, used mostly for 3D transforms. The indexing is this:
- matrix[column][row]. */
-typedef S3L_Unit S3L_Mat4[4][4];
-
-#define S3L_logMat4(m) \
- printf( \
- "Mat4:\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n", \
- (m)[0][0], (m)[1][0], (m)[2][0], (m)[3][0], (m)[0][1], (m)[1][1], \
- (m)[2][1], (m)[3][1], (m)[0][2], (m)[1][2], (m)[2][2], (m)[3][2], \
- (m)[0][3], (m)[1][3], (m)[2][3], (m)[3][3])
-
-/** Initializes a 4x4 matrix to identity. */
-static inline void S3L_mat4Init(S3L_Mat4 m);
-
-void S3L_mat4Copy(S3L_Mat4 src, S3L_Mat4 dst);
-
-void S3L_mat4Transpose(S3L_Mat4 m);
-
-void S3L_makeTranslationMat(S3L_Unit offsetX,
- S3L_Unit offsetY,
- S3L_Unit offsetZ,
- S3L_Mat4 m);
-
-/** Makes a scaling matrix. DON'T FORGET: scale of 1.0 is set with
- S3L_FRACTIONS_PER_UNIT! */
-void S3L_makeScaleMatrix(S3L_Unit scaleX,
- S3L_Unit scaleY,
- S3L_Unit scaleZ,
- S3L_Mat4 m);
-
-/** Makes a matrix for rotation in the ZXY order. */
-void S3L_makeRotationMatrixZXY(S3L_Unit byX,
- S3L_Unit byY,
- S3L_Unit byZ,
- S3L_Mat4 m);
-
-void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 m);
-void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 m);
-
-/** Multiplies a vector by a matrix with normalization by
- S3L_FRACTIONS_PER_UNIT. Result is stored in the input vector. */
-void S3L_vec4Xmat4(S3L_Vec4* v, S3L_Mat4 m);
-
-/** Same as S3L_vec4Xmat4 but faster, because this version doesn't compute the
- W component of the result, which is usually not needed. */
-void S3L_vec3Xmat4(S3L_Vec4* v, S3L_Mat4 m);
-
-/** Multiplies two matrices with normalization by S3L_FRACTIONS_PER_UNIT.
- Result is stored in the first matrix. The result represents a transformation
- that has the same effect as applying the transformation represented by m1 and
- then m2 (in that order). */
-void S3L_mat4Xmat4(S3L_Mat4 m1, S3L_Mat4 m2);
-
-typedef struct {
- S3L_Unit focalLength; ///< Defines the field of view (FOV).
- S3L_Transform3D transform;
-} S3L_Camera;
-
-void S3L_cameraInit(S3L_Camera* camera);
-
-typedef struct {
- uint8_t backfaceCulling; /**< What backface culling to use. Possible
- values:
- - 0 none
- - 1 clock-wise
- - 2 counter clock-wise */
- int8_t visible; /**< Can be used to easily hide the model. */
-} S3L_DrawConfig;
-
-void S3L_drawConfigInit(S3L_DrawConfig* config);
-
-typedef struct {
- const S3L_Unit* vertices;
- S3L_Index vertexCount;
- const S3L_Index* triangles;
- S3L_Index triangleCount;
- S3L_Transform3D transform;
- S3L_Mat4* customTransformMatrix; /**< This can be used to override the
- transform (if != 0) with a custom
- transform matrix, which is more
- general. */
- S3L_DrawConfig config;
-} S3L_Model3D; ///< Represents a 3D model.
-
-void S3L_model3DInit(const S3L_Unit* vertices,
- S3L_Index vertexCount,
- const S3L_Index* triangles,
- S3L_Index triangleCount,
- S3L_Model3D* model);
-
-typedef struct {
- S3L_Model3D* models;
- S3L_Index modelCount;
- S3L_Camera camera;
-} S3L_Scene; ///< Represent the 3D scene to be rendered.
-
-void S3L_sceneInit(S3L_Model3D* models, S3L_Index modelCount, S3L_Scene* scene);
-
-typedef struct {
- S3L_ScreenCoord x; ///< Screen X coordinate.
- S3L_ScreenCoord y; ///< Screen Y coordinate.
-
- S3L_Unit barycentric[3]; /**< Barycentric coords correspond to the three
- vertices. These serve to locate the pixel on a
- triangle and interpolate values between its
- three points. Each one goes from 0 to
- S3L_FRACTIONS_PER_UNIT (including), but due to
- rounding error may fall outside this range (you
- can use S3L_correctBarycentricCoords to fix this
- for the price of some performance). The sum of
- the three coordinates will always be exactly
- S3L_FRACTIONS_PER_UNIT. */
- S3L_Index modelIndex; ///< Model index within the scene.
- S3L_Index triangleIndex; ///< Triangle index within the model.
- uint32_t triangleID; /**< Unique ID of the triangle withing the whole
- scene. This can be used e.g. by a cache to
- quickly find out if a triangle has changed. */
- S3L_Unit depth; ///< Depth (only if depth is turned on).
- S3L_Unit previousZ; /**< Z-buffer value (not necessarily world depth in
- S3L_Units!) that was in the z-buffer on the
- pixels position before this pixel was
- rasterized. This can be used to set the value
- back, e.g. for transparency. */
- S3L_ScreenCoord triangleSize[2]; /**< Rasterized triangle width and height,
- can be used e.g. for MIP mapping. */
-} S3L_PixelInfo; /**< Used to pass the info about a rasterized pixel
- (fragment) to the user-defined drawing func. */
-
-static inline void S3L_pixelInfoInit(S3L_PixelInfo* p);
-
-/** Corrects barycentric coordinates so that they exactly meet the defined
- conditions (each fall into <0,S3L_FRACTIONS_PER_UNIT>, sum =
- S3L_FRACTIONS_PER_UNIT). Note that doing this per-pixel can slow the program
- down significantly. */
-static inline void S3L_correctBarycentricCoords(S3L_Unit barycentric[3]);
-
-// general helper functions
-static inline S3L_Unit S3L_abs(S3L_Unit value);
-static inline S3L_Unit S3L_min(S3L_Unit v1, S3L_Unit v2);
-static inline S3L_Unit S3L_max(S3L_Unit v1, S3L_Unit v2);
-static inline S3L_Unit S3L_clamp(S3L_Unit v, S3L_Unit v1, S3L_Unit v2);
-static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod);
-static inline S3L_Unit S3L_nonZero(S3L_Unit value);
-static inline S3L_Unit S3L_zeroClamp(S3L_Unit value);
-
-S3L_Unit S3L_sin(S3L_Unit x);
-S3L_Unit S3L_asin(S3L_Unit x);
-static inline S3L_Unit S3L_cos(S3L_Unit x);
-
-S3L_Unit S3L_vec3Length(S3L_Vec4 v);
-S3L_Unit S3L_sqrt(S3L_Unit value);
-
-/** Projects a single point from 3D space to the screen space (pixels), which
- can be useful e.g. for drawing sprites. The w component of input and result
- holds the point size. If this size is 0 in the result, the sprite is outside
- the view. */
-void project3DPointToScreen(S3L_Vec4 point,
- S3L_Camera camera,
- S3L_Vec4* result);
-
-/** Computes a normalized normal of given triangle. */
-void S3L_triangleNormal(S3L_Vec4 t0, S3L_Vec4 t1, S3L_Vec4 t2, S3L_Vec4* n);
-
-/** Helper function for retrieving per-vertex indexed values from an array,
- e.g. texturing (UV) coordinates. The 'indices' array contains three indices
- for each triangle, each index pointing into 'values' array, which contains
- the values, each one consisting of 'numComponents' components (e.g. 2 for
- UV coordinates). The three values are retrieved into 'v0', 'v1' and 'v2'
- vectors (into x, y, z and w, depending on 'numComponents'). This function is
- meant to be used per-triangle (typically from a cache), NOT per-pixel, as it
- is not as fast as possible! */
-void S3L_getIndexedTriangleValues(S3L_Index triangleIndex,
- const S3L_Index* indices,
- const S3L_Unit* values,
- uint8_t numComponents,
- S3L_Vec4* v0,
- S3L_Vec4* v1,
- S3L_Vec4* v2);
-
-/** Computes a normalized normal for every vertex of given model (this is
- relatively slow and SHOUDN'T be done each frame). The dst array must have a
- sufficient size preallocated! The size is: number of model vertices * 3 *
- sizeof(S3L_Unit). Note that for advanced allowing sharp edges it is not
- sufficient to have per-vertex normals, but must be per-triangle. This
- function doesn't support this.
-
- The function computes a normal for each vertex by averaging normals of
- the triangles containing the vertex. The maximum number of these triangle
- normals that will be averaged is set with
- S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE. */
-void S3L_computeModelNormals(S3L_Model3D model,
- S3L_Unit* dst,
- int8_t transformNormals);
-
-/** Interpolated between two values, v1 and v2, in the same ratio as t is to
- tMax. Does NOT prevent zero division. */
-static inline S3L_Unit S3L_interpolate(S3L_Unit v1,
- S3L_Unit v2,
- S3L_Unit t,
- S3L_Unit tMax);
-
-/** Same as S3L_interpolate but with v1 == 0. Should be faster. */
-static inline S3L_Unit S3L_interpolateFrom0(S3L_Unit v2,
- S3L_Unit t,
- S3L_Unit tMax);
-
-/** Like S3L_interpolate, but uses a parameter that goes from 0 to
- S3L_FRACTIONS_PER_UNIT - 1, which can be faster. */
-static inline S3L_Unit S3L_interpolateByUnit(S3L_Unit v1,
- S3L_Unit v2,
- S3L_Unit t);
-
-/** Same as S3L_interpolateByUnit but with v1 == 0. Should be faster. */
-static inline S3L_Unit S3L_interpolateByUnitFrom0(S3L_Unit v2, S3L_Unit t);
-
-static inline S3L_Unit S3L_distanceManhattan(S3L_Vec4 a, S3L_Vec4 b);
-
-/** Returns a value interpolated between the three triangle vertices based on
- barycentric coordinates. */
-static inline S3L_Unit S3L_interpolateBarycentric(S3L_Unit value0,
- S3L_Unit value1,
- S3L_Unit value2,
- S3L_Unit barycentric[3]);
-
-static inline void S3L_mapProjectionPlaneToScreen(S3L_Vec4 point,
- S3L_ScreenCoord* screenX,
- S3L_ScreenCoord* screenY);
-
-/** Draws a triangle according to given config. The vertices are specified in
- Screen Space space (pixels). If perspective correction is enabled, each
- vertex has to have a depth (Z position in camera space) specified in the Z
- component. */
-void S3L_drawTriangle(S3L_Vec4 point0,
- S3L_Vec4 point1,
- S3L_Vec4 point2,
- S3L_Index modelIndex,
- S3L_Index triangleIndex);
-
-/** This should be called before rendering each frame. The function clears
- buffers and does potentially other things needed for the frame. */
-void S3L_newFrame(void);
-
-void S3L_zBufferClear(void);
-void S3L_stencilBufferClear(void);
-
-/** Writes a value (not necessarily depth! depends on the format of z-buffer)
- to z-buffer (if enabled). Does NOT check boundaries! */
-void S3L_zBufferWrite(S3L_ScreenCoord x, S3L_ScreenCoord y, S3L_Unit value);
-
-/** Reads a value (not necessarily depth! depends on the format of z-buffer)
- from z-buffer (if enabled). Does NOT check boundaries! */
-S3L_Unit S3L_zBufferRead(S3L_ScreenCoord x, S3L_ScreenCoord y);
-
-static inline void S3L_rotate2DPoint(S3L_Unit* x, S3L_Unit* y, S3L_Unit angle);
-
-/** Predefined vertices of a cube to simply insert in an array. These come with
- S3L_CUBE_TRIANGLES and S3L_CUBE_TEXCOORDS. */
-#define S3L_CUBE_VERTICES(m) \
- /* 0 front, bottom, right */ \
- m / 2, -m / 2, -m / 2, /* 1 front, bottom, left */ \
- -m / 2, -m / 2, -m / 2, /* 2 front, top, right */ \
- m / 2, m / 2, -m / 2, /* 3 front, top, left */ \
- -m / 2, m / 2, -m / 2, /* 4 back, bottom, right */ \
- m / 2, -m / 2, m / 2, /* 5 back, bottom, left */ \
- -m / 2, -m / 2, m / 2, /* 6 back, top, right */ \
- m / 2, m / 2, m / 2, /* 7 back, top, left */ \
- -m / 2, m / 2, m / 2
-
-#define S3L_CUBE_VERTEX_COUNT 8
-
-/** Predefined triangle indices of a cube, to be used with S3L_CUBE_VERTICES
- and S3L_CUBE_TEXCOORDS. */
-#define S3L_CUBE_TRIANGLES \
- 3, 0, 2, /* front */ \
- 1, 0, 3, 0, 4, 2, /* right */ \
- 2, 4, 6, 4, 5, 6, /* back */ \
- 7, 6, 5, 3, 7, 1, /* left */ \
- 1, 7, 5, 6, 3, 2, /* top */ \
- 7, 3, 6, 1, 4, 0, /* bottom */ \
- 5, 4, 1
-
-#define S3L_CUBE_TRIANGLE_COUNT 12
-
-/** Predefined texture coordinates of a cube, corresponding to triangles (NOT
- vertices), to be used with S3L_CUBE_VERTICES and S3L_CUBE_TRIANGLES. */
-#define S3L_CUBE_TEXCOORDS(m) \
- 0, 0, m, m, m, 0, 0, m, m, m, 0, 0, m, m, m, 0, 0, m, 0, m, m, 0, 0, 0, m, \
- 0, 0, 0, m, m, 0, m, m, m, 0, 0, 0, 0, 0, m, m, 0, m, 0, 0, m, m, m, \
- 0, 0, m, m, m, 0, 0, m, m, m, 0, 0, m, 0, 0, m, m, m, 0, 0, 0, m, m, 0
-
-//=============================================================================
-// privates
-
-#define S3L_UNUSED(what) (void)(what) ///< helper macro for unused vars
-
-#define S3L_HALF_RESOLUTION_X (S3L_RESOLUTION_X >> 1)
-#define S3L_HALF_RESOLUTION_Y (S3L_RESOLUTION_Y >> 1)
-
-#define S3L_PROJECTION_PLANE_HEIGHT \
- ((S3L_RESOLUTION_Y * S3L_FRACTIONS_PER_UNIT * 2) / S3L_RESOLUTION_X)
-
-#if S3L_Z_BUFFER == 1
-#define S3L_MAX_DEPTH 2147483647
-S3L_Unit S3L_zBuffer[S3L_MAX_PIXELS];
-#define S3L_zBufferFormat(depth) (depth)
-#elif S3L_Z_BUFFER == 2
-#define S3L_MAX_DEPTH 255
-uint8_t S3L_zBuffer[S3L_MAX_PIXELS];
-#define S3L_zBufferFormat(depth) \
- S3L_min(255, (depth) >> S3L_REDUCED_Z_BUFFER_GRANULARITY)
-#endif
-
-#if S3L_Z_BUFFER
-static inline int8_t S3L_zTest(S3L_ScreenCoord x,
- S3L_ScreenCoord y,
- S3L_Unit depth) {
- uint32_t index = y * S3L_RESOLUTION_X + x;
-
- depth = S3L_zBufferFormat(depth);
-
-#if S3L_Z_BUFFER == 2
-#define cmp \
- <= /* For reduced z-buffer we need equality test, because \
- otherwise pixels at the maximum depth (255) would never be \
- drawn over the background (which also has the depth of \
- 255). */
-#else
-#define cmp \
- < /* For normal z-buffer we leave out equality test to not waste \
- time by drawing over already drawn pixls. */
-#endif
-
- if (depth cmp S3L_zBuffer[index]) {
- S3L_zBuffer[index] = depth;
- return 1;
- }
-
-#undef cmp
-
- return 0;
-}
-#endif
-
-S3L_Unit S3L_zBufferRead(S3L_ScreenCoord x, S3L_ScreenCoord y) {
-#if S3L_Z_BUFFER
- return S3L_zBuffer[y * S3L_RESOLUTION_X + x];
-#else
- S3L_UNUSED(x);
- S3L_UNUSED(y);
-
- return 0;
-#endif
-}
-
-void S3L_zBufferWrite(S3L_ScreenCoord x, S3L_ScreenCoord y, S3L_Unit value) {
-#if S3L_Z_BUFFER
- S3L_zBuffer[y * S3L_RESOLUTION_X + x] = value;
-#else
- S3L_UNUSED(x);
- S3L_UNUSED(y);
- S3L_UNUSED(value);
-#endif
-}
-
-#if S3L_STENCIL_BUFFER
-#define S3L_STENCIL_BUFFER_SIZE \
- ((S3L_RESOLUTION_X * S3L_RESOLUTION_Y - 1) / 8 + 1)
-
-uint8_t S3L_stencilBuffer[S3L_STENCIL_BUFFER_SIZE];
-
-static inline int8_t S3L_stencilTest(S3L_ScreenCoord x, S3L_ScreenCoord y) {
- uint32_t index = y * S3L_RESOLUTION_X + x;
- uint32_t bit = (index & 0x00000007);
- index = index >> 3;
-
- uint8_t val = S3L_stencilBuffer[index];
-
- if ((val >> bit) & 0x1)
- return 0;
-
- S3L_stencilBuffer[index] = val | (0x1 << bit);
-
- return 1;
-}
-#endif
-
-#define S3L_COMPUTE_LERP_DEPTH \
- (S3L_COMPUTE_DEPTH && (S3L_PERSPECTIVE_CORRECTION == 0))
-
-#define S3L_SIN_TABLE_LENGTH 128
-
-static const S3L_Unit S3L_sinTable[S3L_SIN_TABLE_LENGTH] = {
- /* 511 was chosen here as a highest number that doesn't overflow during
- compilation for S3L_FRACTIONS_PER_UNIT == 1024 */
-
- (0 * S3L_FRACTIONS_PER_UNIT) / 511, (6 * S3L_FRACTIONS_PER_UNIT) / 511,
- (12 * S3L_FRACTIONS_PER_UNIT) / 511, (18 * S3L_FRACTIONS_PER_UNIT) / 511,
- (25 * S3L_FRACTIONS_PER_UNIT) / 511, (31 * S3L_FRACTIONS_PER_UNIT) / 511,
- (37 * S3L_FRACTIONS_PER_UNIT) / 511, (43 * S3L_FRACTIONS_PER_UNIT) / 511,
- (50 * S3L_FRACTIONS_PER_UNIT) / 511, (56 * S3L_FRACTIONS_PER_UNIT) / 511,
- (62 * S3L_FRACTIONS_PER_UNIT) / 511, (68 * S3L_FRACTIONS_PER_UNIT) / 511,
- (74 * S3L_FRACTIONS_PER_UNIT) / 511, (81 * S3L_FRACTIONS_PER_UNIT) / 511,
- (87 * S3L_FRACTIONS_PER_UNIT) / 511, (93 * S3L_FRACTIONS_PER_UNIT) / 511,
- (99 * S3L_FRACTIONS_PER_UNIT) / 511, (105 * S3L_FRACTIONS_PER_UNIT) / 511,
- (111 * S3L_FRACTIONS_PER_UNIT) / 511, (118 * S3L_FRACTIONS_PER_UNIT) / 511,
- (124 * S3L_FRACTIONS_PER_UNIT) / 511, (130 * S3L_FRACTIONS_PER_UNIT) / 511,
- (136 * S3L_FRACTIONS_PER_UNIT) / 511, (142 * S3L_FRACTIONS_PER_UNIT) / 511,
- (148 * S3L_FRACTIONS_PER_UNIT) / 511, (154 * S3L_FRACTIONS_PER_UNIT) / 511,
- (160 * S3L_FRACTIONS_PER_UNIT) / 511, (166 * S3L_FRACTIONS_PER_UNIT) / 511,
- (172 * S3L_FRACTIONS_PER_UNIT) / 511, (178 * S3L_FRACTIONS_PER_UNIT) / 511,
- (183 * S3L_FRACTIONS_PER_UNIT) / 511, (189 * S3L_FRACTIONS_PER_UNIT) / 511,
- (195 * S3L_FRACTIONS_PER_UNIT) / 511, (201 * S3L_FRACTIONS_PER_UNIT) / 511,
- (207 * S3L_FRACTIONS_PER_UNIT) / 511, (212 * S3L_FRACTIONS_PER_UNIT) / 511,
- (218 * S3L_FRACTIONS_PER_UNIT) / 511, (224 * S3L_FRACTIONS_PER_UNIT) / 511,
- (229 * S3L_FRACTIONS_PER_UNIT) / 511, (235 * S3L_FRACTIONS_PER_UNIT) / 511,
- (240 * S3L_FRACTIONS_PER_UNIT) / 511, (246 * S3L_FRACTIONS_PER_UNIT) / 511,
- (251 * S3L_FRACTIONS_PER_UNIT) / 511, (257 * S3L_FRACTIONS_PER_UNIT) / 511,
- (262 * S3L_FRACTIONS_PER_UNIT) / 511, (268 * S3L_FRACTIONS_PER_UNIT) / 511,
- (273 * S3L_FRACTIONS_PER_UNIT) / 511, (278 * S3L_FRACTIONS_PER_UNIT) / 511,
- (283 * S3L_FRACTIONS_PER_UNIT) / 511, (289 * S3L_FRACTIONS_PER_UNIT) / 511,
- (294 * S3L_FRACTIONS_PER_UNIT) / 511, (299 * S3L_FRACTIONS_PER_UNIT) / 511,
- (304 * S3L_FRACTIONS_PER_UNIT) / 511, (309 * S3L_FRACTIONS_PER_UNIT) / 511,
- (314 * S3L_FRACTIONS_PER_UNIT) / 511, (319 * S3L_FRACTIONS_PER_UNIT) / 511,
- (324 * S3L_FRACTIONS_PER_UNIT) / 511, (328 * S3L_FRACTIONS_PER_UNIT) / 511,
- (333 * S3L_FRACTIONS_PER_UNIT) / 511, (338 * S3L_FRACTIONS_PER_UNIT) / 511,
- (343 * S3L_FRACTIONS_PER_UNIT) / 511, (347 * S3L_FRACTIONS_PER_UNIT) / 511,
- (352 * S3L_FRACTIONS_PER_UNIT) / 511, (356 * S3L_FRACTIONS_PER_UNIT) / 511,
- (361 * S3L_FRACTIONS_PER_UNIT) / 511, (365 * S3L_FRACTIONS_PER_UNIT) / 511,
- (370 * S3L_FRACTIONS_PER_UNIT) / 511, (374 * S3L_FRACTIONS_PER_UNIT) / 511,
- (378 * S3L_FRACTIONS_PER_UNIT) / 511, (382 * S3L_FRACTIONS_PER_UNIT) / 511,
- (386 * S3L_FRACTIONS_PER_UNIT) / 511, (391 * S3L_FRACTIONS_PER_UNIT) / 511,
- (395 * S3L_FRACTIONS_PER_UNIT) / 511, (398 * S3L_FRACTIONS_PER_UNIT) / 511,
- (402 * S3L_FRACTIONS_PER_UNIT) / 511, (406 * S3L_FRACTIONS_PER_UNIT) / 511,
- (410 * S3L_FRACTIONS_PER_UNIT) / 511, (414 * S3L_FRACTIONS_PER_UNIT) / 511,
- (417 * S3L_FRACTIONS_PER_UNIT) / 511, (421 * S3L_FRACTIONS_PER_UNIT) / 511,
- (424 * S3L_FRACTIONS_PER_UNIT) / 511, (428 * S3L_FRACTIONS_PER_UNIT) / 511,
- (431 * S3L_FRACTIONS_PER_UNIT) / 511, (435 * S3L_FRACTIONS_PER_UNIT) / 511,
- (438 * S3L_FRACTIONS_PER_UNIT) / 511, (441 * S3L_FRACTIONS_PER_UNIT) / 511,
- (444 * S3L_FRACTIONS_PER_UNIT) / 511, (447 * S3L_FRACTIONS_PER_UNIT) / 511,
- (450 * S3L_FRACTIONS_PER_UNIT) / 511, (453 * S3L_FRACTIONS_PER_UNIT) / 511,
- (456 * S3L_FRACTIONS_PER_UNIT) / 511, (459 * S3L_FRACTIONS_PER_UNIT) / 511,
- (461 * S3L_FRACTIONS_PER_UNIT) / 511, (464 * S3L_FRACTIONS_PER_UNIT) / 511,
- (467 * S3L_FRACTIONS_PER_UNIT) / 511, (469 * S3L_FRACTIONS_PER_UNIT) / 511,
- (472 * S3L_FRACTIONS_PER_UNIT) / 511, (474 * S3L_FRACTIONS_PER_UNIT) / 511,
- (476 * S3L_FRACTIONS_PER_UNIT) / 511, (478 * S3L_FRACTIONS_PER_UNIT) / 511,
- (481 * S3L_FRACTIONS_PER_UNIT) / 511, (483 * S3L_FRACTIONS_PER_UNIT) / 511,
- (485 * S3L_FRACTIONS_PER_UNIT) / 511, (487 * S3L_FRACTIONS_PER_UNIT) / 511,
- (488 * S3L_FRACTIONS_PER_UNIT) / 511, (490 * S3L_FRACTIONS_PER_UNIT) / 511,
- (492 * S3L_FRACTIONS_PER_UNIT) / 511, (494 * S3L_FRACTIONS_PER_UNIT) / 511,
- (495 * S3L_FRACTIONS_PER_UNIT) / 511, (497 * S3L_FRACTIONS_PER_UNIT) / 511,
- (498 * S3L_FRACTIONS_PER_UNIT) / 511, (499 * S3L_FRACTIONS_PER_UNIT) / 511,
- (501 * S3L_FRACTIONS_PER_UNIT) / 511, (502 * S3L_FRACTIONS_PER_UNIT) / 511,
- (503 * S3L_FRACTIONS_PER_UNIT) / 511, (504 * S3L_FRACTIONS_PER_UNIT) / 511,
- (505 * S3L_FRACTIONS_PER_UNIT) / 511, (506 * S3L_FRACTIONS_PER_UNIT) / 511,
- (507 * S3L_FRACTIONS_PER_UNIT) / 511, (507 * S3L_FRACTIONS_PER_UNIT) / 511,
- (508 * S3L_FRACTIONS_PER_UNIT) / 511, (509 * S3L_FRACTIONS_PER_UNIT) / 511,
- (509 * S3L_FRACTIONS_PER_UNIT) / 511, (510 * S3L_FRACTIONS_PER_UNIT) / 511,
- (510 * S3L_FRACTIONS_PER_UNIT) / 511, (510 * S3L_FRACTIONS_PER_UNIT) / 511,
- (510 * S3L_FRACTIONS_PER_UNIT) / 511, (510 * S3L_FRACTIONS_PER_UNIT) / 511};
-
-#define S3L_SIN_TABLE_UNIT_STEP \
- (S3L_FRACTIONS_PER_UNIT / (S3L_SIN_TABLE_LENGTH * 4))
-
-void S3L_vec4Init(S3L_Vec4* v) {
- v->x = 0;
- v->y = 0;
- v->z = 0;
- v->w = S3L_FRACTIONS_PER_UNIT;
-}
-
-void S3L_vec4Set(S3L_Vec4* v, S3L_Unit x, S3L_Unit y, S3L_Unit z, S3L_Unit w) {
- v->x = x;
- v->y = y;
- v->z = z;
- v->w = w;
-}
-
-void S3L_vec3Add(S3L_Vec4* result, S3L_Vec4 added) {
- result->x += added.x;
- result->y += added.y;
- result->z += added.z;
-}
-
-void S3L_vec3Sub(S3L_Vec4* result, S3L_Vec4 substracted) {
- result->x -= substracted.x;
- result->y -= substracted.y;
- result->z -= substracted.z;
-}
-
-void S3L_mat4Init(S3L_Mat4 m) {
-#define M(x, y) m[x][y]
-#define S S3L_FRACTIONS_PER_UNIT
-
- M(0, 0) = S;
- M(1, 0) = 0;
- M(2, 0) = 0;
- M(3, 0) = 0;
- M(0, 1) = 0;
- M(1, 1) = S;
- M(2, 1) = 0;
- M(3, 1) = 0;
- M(0, 2) = 0;
- M(1, 2) = 0;
- M(2, 2) = S;
- M(3, 2) = 0;
- M(0, 3) = 0;
- M(1, 3) = 0;
- M(2, 3) = 0;
- M(3, 3) = S;
-
-#undef M
-#undef S
-}
-
-void S3L_mat4Copy(S3L_Mat4 src, S3L_Mat4 dst) {
- for (uint8_t j = 0; j < 4; ++j)
- for (uint8_t i = 0; i < 4; ++i)
- dst[i][j] = src[i][j];
-}
-
-S3L_Unit S3L_vec3Dot(S3L_Vec4 a, S3L_Vec4 b) {
- return (a.x * b.x + a.y * b.y + a.z * b.z) / S3L_FRACTIONS_PER_UNIT;
-}
-
-void S3L_reflect(S3L_Vec4 toLight, S3L_Vec4 normal, S3L_Vec4* result) {
- S3L_Unit d = 2 * S3L_vec3Dot(toLight, normal);
-
- result->x = (normal.x * d) / S3L_FRACTIONS_PER_UNIT - toLight.x;
- result->y = (normal.y * d) / S3L_FRACTIONS_PER_UNIT - toLight.y;
- result->z = (normal.z * d) / S3L_FRACTIONS_PER_UNIT - toLight.z;
-}
-
-void S3L_vec3Cross(S3L_Vec4 a, S3L_Vec4 b, S3L_Vec4* result) {
- result->x = a.y * b.z - a.z * b.y;
- result->y = a.z * b.x - a.x * b.z;
- result->z = a.x * b.y - a.y * b.x;
-}
-
-void S3L_triangleNormal(S3L_Vec4 t0, S3L_Vec4 t1, S3L_Vec4 t2, S3L_Vec4* n) {
-#define ANTI_OVERFLOW 32
-
- t1.x = (t1.x - t0.x) / ANTI_OVERFLOW;
- t1.y = (t1.y - t0.y) / ANTI_OVERFLOW;
- t1.z = (t1.z - t0.z) / ANTI_OVERFLOW;
-
- t2.x = (t2.x - t0.x) / ANTI_OVERFLOW;
- t2.y = (t2.y - t0.y) / ANTI_OVERFLOW;
- t2.z = (t2.z - t0.z) / ANTI_OVERFLOW;
-
-#undef ANTI_OVERFLOW
-
- S3L_vec3Cross(t1, t2, n);
-
- S3L_vec3Normalize(n);
-}
-
-void S3L_getIndexedTriangleValues(S3L_Index triangleIndex,
- const S3L_Index* indices,
- const S3L_Unit* values,
- uint8_t numComponents,
- S3L_Vec4* v0,
- S3L_Vec4* v1,
- S3L_Vec4* v2) {
- uint32_t i0, i1;
- S3L_Unit* value;
-
- i0 = triangleIndex * 3;
- i1 = indices[i0] * numComponents;
- value = (S3L_Unit*)v0;
-
- if (numComponents > 4)
- numComponents = 4;
-
- for (uint8_t j = 0; j < numComponents; ++j) {
- *value = values[i1];
- i1++;
- value++;
- }
-
- i0++;
- i1 = indices[i0] * numComponents;
- value = (S3L_Unit*)v1;
-
- for (uint8_t j = 0; j < numComponents; ++j) {
- *value = values[i1];
- i1++;
- value++;
- }
-
- i0++;
- i1 = indices[i0] * numComponents;
- value = (S3L_Unit*)v2;
-
- for (uint8_t j = 0; j < numComponents; ++j) {
- *value = values[i1];
- i1++;
- value++;
- }
-}
-
-void S3L_computeModelNormals(S3L_Model3D model,
- S3L_Unit* dst,
- int8_t transformNormals) {
- S3L_Index vPos = 0;
-
- S3L_Vec4 n;
-
- n.w = 0;
-
- S3L_Vec4 ns[S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE];
- S3L_Index normalCount;
-
- for (uint32_t i = 0; i < model.vertexCount; ++i) {
- normalCount = 0;
-
- for (uint32_t j = 0; j < model.triangleCount * 3; j += 3) {
- if ((model.triangles[j] == i) || (model.triangles[j + 1] == i) ||
- (model.triangles[j + 2] == i)) {
- S3L_Vec4 t0, t1, t2;
- uint32_t vIndex;
-
-#define getVertex(n) \
- vIndex = model.triangles[j + n] * 3; \
- t##n.x = model.vertices[vIndex]; \
- vIndex++; \
- t##n.y = model.vertices[vIndex]; \
- vIndex++; \
- t##n.z = model.vertices[vIndex];
-
- getVertex(0) getVertex(1) getVertex(2)
-
-#undef getVertex
-
- S3L_triangleNormal(t0, t1, t2, &(ns[normalCount]));
-
- normalCount++;
-
- if (normalCount >= S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE)
- break;
- }
- }
-
- n.x = S3L_FRACTIONS_PER_UNIT;
- n.y = 0;
- n.z = 0;
-
- if (normalCount != 0) {
- // compute average
-
- n.x = 0;
-
- for (uint8_t i = 0; i < normalCount; ++i) {
- n.x += ns[i].x;
- n.y += ns[i].y;
- n.z += ns[i].z;
- }
-
- n.x /= normalCount;
- n.y /= normalCount;
- n.z /= normalCount;
-
- S3L_vec3Normalize(&n);
- }
-
- dst[vPos] = n.x;
- vPos++;
-
- dst[vPos] = n.y;
- vPos++;
-
- dst[vPos] = n.z;
- vPos++;
- }
-
- S3L_Mat4 m;
-
- S3L_makeWorldMatrix(model.transform, m);
-
- if (transformNormals)
- for (S3L_Index i = 0; i < model.vertexCount * 3; i += 3) {
- n.x = dst[i];
- n.y = dst[i + 1];
- n.z = dst[i + 2];
-
- S3L_vec4Xmat4(&n, m);
-
- dst[i] = n.x;
- dst[i + 1] = n.y;
- dst[i + 2] = n.z;
- }
-}
-
-void S3L_vec4Xmat4(S3L_Vec4* v, S3L_Mat4 m) {
- S3L_Vec4 vBackup;
-
- vBackup.x = v->x;
- vBackup.y = v->y;
- vBackup.z = v->z;
- vBackup.w = v->w;
-
-#define dotCol(col) \
- ((vBackup.x * m[col][0]) + (vBackup.y * m[col][1]) + \
- (vBackup.z * m[col][2]) + (vBackup.w * m[col][3])) / \
- S3L_FRACTIONS_PER_UNIT
-
- v->x = dotCol(0);
- v->y = dotCol(1);
- v->z = dotCol(2);
- v->w = dotCol(3);
-}
-
-void S3L_vec3Xmat4(S3L_Vec4* v, S3L_Mat4 m) {
- S3L_Vec4 vBackup;
-
-#undef dotCol
-#define dotCol(col) \
- (vBackup.x * m[col][0]) / S3L_FRACTIONS_PER_UNIT + \
- (vBackup.y * m[col][1]) / S3L_FRACTIONS_PER_UNIT + \
- (vBackup.z * m[col][2]) / S3L_FRACTIONS_PER_UNIT + m[col][3]
-
- vBackup.x = v->x;
- vBackup.y = v->y;
- vBackup.z = v->z;
- vBackup.w = v->w;
-
- v->x = dotCol(0);
- v->y = dotCol(1);
- v->z = dotCol(2);
- v->w = S3L_FRACTIONS_PER_UNIT;
-}
-
-#undef dotCol
-
-S3L_Unit S3L_abs(S3L_Unit value) {
- return value * (((value >= 0) << 1) - 1);
-}
-
-S3L_Unit S3L_min(S3L_Unit v1, S3L_Unit v2) {
- return v1 >= v2 ? v2 : v1;
-}
-
-S3L_Unit S3L_max(S3L_Unit v1, S3L_Unit v2) {
- return v1 >= v2 ? v1 : v2;
-}
-
-S3L_Unit S3L_clamp(S3L_Unit v, S3L_Unit v1, S3L_Unit v2) {
- return v >= v1 ? (v <= v2 ? v : v2) : v1;
-}
-
-S3L_Unit S3L_zeroClamp(S3L_Unit value) {
- return (value * (value >= 0));
-}
-
-S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod) {
- return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
-}
-
-S3L_Unit S3L_nonZero(S3L_Unit value) {
- return (value + (value == 0));
-}
-
-S3L_Unit S3L_interpolate(S3L_Unit v1, S3L_Unit v2, S3L_Unit t, S3L_Unit tMax) {
- return v1 + ((v2 - v1) * t) / tMax;
-}
-
-S3L_Unit S3L_interpolateByUnit(S3L_Unit v1, S3L_Unit v2, S3L_Unit t) {
- return v1 + ((v2 - v1) * t) / S3L_FRACTIONS_PER_UNIT;
-}
-
-S3L_Unit S3L_interpolateByUnitFrom0(S3L_Unit v2, S3L_Unit t) {
- return (v2 * t) / S3L_FRACTIONS_PER_UNIT;
-}
-
-S3L_Unit S3L_interpolateFrom0(S3L_Unit v2, S3L_Unit t, S3L_Unit tMax) {
- return (v2 * t) / tMax;
-}
-
-S3L_Unit S3L_distanceManhattan(S3L_Vec4 a, S3L_Vec4 b) {
- return S3L_abs(a.x - b.x) + S3L_abs(a.y - b.y) + S3L_abs(a.z - b.z);
-}
-
-void S3L_mat4Xmat4(S3L_Mat4 m1, S3L_Mat4 m2) {
- S3L_Mat4 mat1;
-
- for (uint16_t row = 0; row < 4; ++row)
- for (uint16_t col = 0; col < 4; ++col)
- mat1[col][row] = m1[col][row];
-
- for (uint16_t row = 0; row < 4; ++row)
- for (uint16_t col = 0; col < 4; ++col) {
- m1[col][row] = 0;
-
- for (uint16_t i = 0; i < 4; ++i)
- m1[col][row] +=
- (mat1[i][row] * m2[col][i]) / S3L_FRACTIONS_PER_UNIT;
- }
-}
-
-S3L_Unit S3L_sin(S3L_Unit x) {
- x = S3L_wrap(x / S3L_SIN_TABLE_UNIT_STEP, S3L_SIN_TABLE_LENGTH * 4);
- int8_t positive = 1;
-
- if (x < S3L_SIN_TABLE_LENGTH) {
- } else if (x < S3L_SIN_TABLE_LENGTH * 2) {
- x = S3L_SIN_TABLE_LENGTH * 2 - x - 1;
- } else if (x < S3L_SIN_TABLE_LENGTH * 3) {
- x = x - S3L_SIN_TABLE_LENGTH * 2;
- positive = 0;
- } else {
- x = S3L_SIN_TABLE_LENGTH - (x - S3L_SIN_TABLE_LENGTH * 3) - 1;
- positive = 0;
- }
-
- return positive ? S3L_sinTable[x] : -1 * S3L_sinTable[x];
-}
-
-S3L_Unit S3L_asin(S3L_Unit x) {
- x = S3L_clamp(x, -S3L_FRACTIONS_PER_UNIT, S3L_FRACTIONS_PER_UNIT);
-
- int8_t sign = 1;
-
- if (x < 0) {
- sign = -1;
- x *= -1;
- }
-
- int16_t low = 0;
- int16_t high = S3L_SIN_TABLE_LENGTH - 1;
- int16_t middle;
-
- while (low <= high) // binary search
- {
- middle = (low + high) / 2;
-
- S3L_Unit v = S3L_sinTable[middle];
-
- if (v > x)
- high = middle - 1;
- else if (v < x)
- low = middle + 1;
- else
- break;
- }
-
- middle *= S3L_SIN_TABLE_UNIT_STEP;
-
- return sign * middle;
-}
-
-S3L_Unit S3L_cos(S3L_Unit x) {
- return S3L_sin(x + S3L_FRACTIONS_PER_UNIT / 4);
-}
-
-void S3L_correctBarycentricCoords(S3L_Unit barycentric[3]) {
- barycentric[0] = S3L_clamp(barycentric[0], 0, S3L_FRACTIONS_PER_UNIT);
- barycentric[1] = S3L_clamp(barycentric[1], 0, S3L_FRACTIONS_PER_UNIT);
-
- S3L_Unit d = S3L_FRACTIONS_PER_UNIT - barycentric[0] - barycentric[1];
-
- if (d < 0) {
- barycentric[0] += d;
- barycentric[2] = 0;
- } else
- barycentric[2] = d;
-}
-
-void S3L_makeTranslationMat(S3L_Unit offsetX,
- S3L_Unit offsetY,
- S3L_Unit offsetZ,
- S3L_Mat4 m) {
-#define M(x, y) m[x][y]
-#define S S3L_FRACTIONS_PER_UNIT
-
- M(0, 0) = S;
- M(1, 0) = 0;
- M(2, 0) = 0;
- M(3, 0) = 0;
- M(0, 1) = 0;
- M(1, 1) = S;
- M(2, 1) = 0;
- M(3, 1) = 0;
- M(0, 2) = 0;
- M(1, 2) = 0;
- M(2, 2) = S;
- M(3, 2) = 0;
- M(0, 3) = offsetX;
- M(1, 3) = offsetY;
- M(2, 3) = offsetZ;
- M(3, 3) = S;
-
-#undef M
-#undef S
-}
-
-void S3L_makeScaleMatrix(S3L_Unit scaleX,
- S3L_Unit scaleY,
- S3L_Unit scaleZ,
- S3L_Mat4 m) {
-#define M(x, y) m[x][y]
-
- M(0, 0) = scaleX;
- M(1, 0) = 0;
- M(2, 0) = 0;
- M(3, 0) = 0;
- M(0, 1) = 0;
- M(1, 1) = scaleY;
- M(2, 1) = 0;
- M(3, 1) = 0;
- M(0, 2) = 0;
- M(1, 2) = 0;
- M(2, 2) = scaleZ;
- M(3, 2) = 0;
- M(0, 3) = 0;
- M(1, 3) = 0;
- M(2, 3) = 0;
- M(3, 3) = S3L_FRACTIONS_PER_UNIT;
-
-#undef M
-}
-
-void S3L_makeRotationMatrixZXY(S3L_Unit byX,
- S3L_Unit byY,
- S3L_Unit byZ,
- S3L_Mat4 m) {
- byX *= -1;
- byY *= -1;
- byZ *= -1;
-
- S3L_Unit sx = S3L_sin(byX);
- S3L_Unit sy = S3L_sin(byY);
- S3L_Unit sz = S3L_sin(byZ);
-
- S3L_Unit cx = S3L_cos(byX);
- S3L_Unit cy = S3L_cos(byY);
- S3L_Unit cz = S3L_cos(byZ);
-
-#define M(x, y) m[x][y]
-#define S S3L_FRACTIONS_PER_UNIT
-
- M(0, 0) = (cy * cz) / S + (sy * sx * sz) / (S * S);
- M(1, 0) = (cx * sz) / S;
- M(2, 0) = (cy * sx * sz) / (S * S) - (cz * sy) / S;
- M(3, 0) = 0;
-
- M(0, 1) = (cz * sy * sx) / (S * S) - (cy * sz) / S;
- M(1, 1) = (cx * cz) / S;
- M(2, 1) = (cy * cz * sx) / (S * S) + (sy * sz) / S;
- M(3, 1) = 0;
-
- M(0, 2) = (cx * sy) / S;
- M(1, 2) = -1 * sx;
- M(2, 2) = (cy * cx) / S;
- M(3, 2) = 0;
-
- M(0, 3) = 0;
- M(1, 3) = 0;
- M(2, 3) = 0;
- M(3, 3) = S3L_FRACTIONS_PER_UNIT;
-
-#undef M
-#undef S
-}
-
-S3L_Unit S3L_sqrt(S3L_Unit value) {
- int8_t sign = 1;
-
- if (value < 0) {
- sign = -1;
- value *= -1;
- }
-
- uint32_t result = 0;
- uint32_t a = value;
- uint32_t b = 1u << 30;
-
- while (b > a)
- b >>= 2;
-
- while (b != 0) {
- if (a >= result + b) {
- a -= result + b;
- result = result + 2 * b;
- }
-
- b >>= 2;
- result >>= 1;
- }
-
- return result * sign;
-}
-
-S3L_Unit S3L_vec3Length(S3L_Vec4 v) {
- return S3L_sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
-}
-
-S3L_Unit S3L_vec2Length(S3L_Vec4 v) {
- return S3L_sqrt(v.x * v.x + v.y * v.y);
-}
-
-void S3L_vec3Normalize(S3L_Vec4* v) {
-#define SCALE 16
-#define BOTTOM_LIMIT 16
-#define UPPER_LIMIT 900
-
- /* Here we try to decide if the vector is too small and would cause
- inaccurate result due to very its inaccurate length. If so, we scale
- it up. We can't scale up everything as big vectors overflow in length
- calculations. */
-
- if (S3L_abs(v->x) <= BOTTOM_LIMIT && S3L_abs(v->y) <= BOTTOM_LIMIT &&
- S3L_abs(v->z) <= BOTTOM_LIMIT) {
- v->x *= SCALE;
- v->y *= SCALE;
- v->z *= SCALE;
- } else if (S3L_abs(v->x) > UPPER_LIMIT || S3L_abs(v->y) > UPPER_LIMIT ||
- S3L_abs(v->z) > UPPER_LIMIT) {
- v->x /= SCALE;
- v->y /= SCALE;
- v->z /= SCALE;
- }
-
-#undef SCALE
-#undef BOTTOM_LIMIT
-#undef UPPER_LIMIT
-
- S3L_Unit l = S3L_vec3Length(*v);
-
- if (l == 0)
- return;
-
- v->x = (v->x * S3L_FRACTIONS_PER_UNIT) / l;
- v->y = (v->y * S3L_FRACTIONS_PER_UNIT) / l;
- v->z = (v->z * S3L_FRACTIONS_PER_UNIT) / l;
-}
-
-void S3L_vec3NormalizeFast(S3L_Vec4* v) {
- S3L_Unit l = S3L_vec3Length(*v);
-
- if (l == 0)
- return;
-
- v->x = (v->x * S3L_FRACTIONS_PER_UNIT) / l;
- v->y = (v->y * S3L_FRACTIONS_PER_UNIT) / l;
- v->z = (v->z * S3L_FRACTIONS_PER_UNIT) / l;
-}
-
-void S3L_transform3DInit(S3L_Transform3D* t) {
- S3L_vec4Init(&(t->translation));
- S3L_vec4Init(&(t->rotation));
- t->scale.x = S3L_FRACTIONS_PER_UNIT;
- t->scale.y = S3L_FRACTIONS_PER_UNIT;
- t->scale.z = S3L_FRACTIONS_PER_UNIT;
- t->scale.w = 0;
-}
-
-/** Performs perspecive division (z-divide). Does NOT check for division by
- zero. */
-static inline void S3L_perspectiveDivide(S3L_Vec4* vector,
- S3L_Unit focalLength) {
- vector->x = (vector->x * focalLength) / vector->z;
- vector->y = (vector->y * focalLength) / vector->z;
-}
-
-void project3DPointToScreen(S3L_Vec4 point,
- S3L_Camera camera,
- S3L_Vec4* result) {
- S3L_Mat4 m;
- S3L_makeCameraMatrix(camera.transform, m);
-
- S3L_Unit s = point.w;
-
- point.w = S3L_FRACTIONS_PER_UNIT;
-
- S3L_vec3Xmat4(&point, m);
-
- point.z = S3L_nonZero(point.z);
-
- S3L_perspectiveDivide(&point, camera.focalLength);
-
- S3L_ScreenCoord x, y;
-
- S3L_mapProjectionPlaneToScreen(point, &x, &y);
-
- result->x = x;
- result->y = y;
- result->z = point.z;
-
- result->w = (point.z <= 0) ? 0
- : ((s * camera.focalLength * S3L_RESOLUTION_X) /
- (point.z * S3L_FRACTIONS_PER_UNIT));
-}
-
-void S3L_lookAt(S3L_Vec4 pointTo, S3L_Transform3D* t) {
- S3L_Vec4 v;
-
- v.x = pointTo.x - t->translation.x;
- v.y = pointTo.z - t->translation.z;
-
- S3L_Unit dx = v.x;
- S3L_Unit l = S3L_vec2Length(v);
-
- dx = (v.x * S3L_FRACTIONS_PER_UNIT) / S3L_nonZero(l); // normalize
-
- t->rotation.y = -1 * S3L_asin(dx);
-
- if (v.y < 0)
- t->rotation.y = S3L_FRACTIONS_PER_UNIT / 2 - t->rotation.y;
-
- v.x = pointTo.y - t->translation.y;
- v.y = l;
-
- l = S3L_vec2Length(v);
-
- dx = (v.x * S3L_FRACTIONS_PER_UNIT) / S3L_nonZero(l);
-
- t->rotation.x = S3L_asin(dx);
-}
-
-void S3L_transform3DSet(S3L_Unit tx,
- S3L_Unit ty,
- S3L_Unit tz,
- S3L_Unit rx,
- S3L_Unit ry,
- S3L_Unit rz,
- S3L_Unit sx,
- S3L_Unit sy,
- S3L_Unit sz,
- S3L_Transform3D* t) {
- t->translation.x = tx;
- t->translation.y = ty;
- t->translation.z = tz;
-
- t->rotation.x = rx;
- t->rotation.y = ry;
- t->rotation.z = rz;
-
- t->scale.x = sx;
- t->scale.y = sy;
- t->scale.z = sz;
-}
-
-void S3L_cameraInit(S3L_Camera* camera) {
- camera->focalLength = S3L_FRACTIONS_PER_UNIT;
- S3L_transform3DInit(&(camera->transform));
-}
-
-void S3L_rotationToDirections(S3L_Vec4 rotation,
- S3L_Unit length,
- S3L_Vec4* forw,
- S3L_Vec4* right,
- S3L_Vec4* up) {
- S3L_Mat4 m;
-
- S3L_makeRotationMatrixZXY(rotation.x, rotation.y, rotation.z, m);
-
- if (forw != 0) {
- forw->x = 0;
- forw->y = 0;
- forw->z = length;
- S3L_vec3Xmat4(forw, m);
- }
-
- if (right != 0) {
- right->x = length;
- right->y = 0;
- right->z = 0;
- S3L_vec3Xmat4(right, m);
- }
-
- if (up != 0) {
- up->x = 0;
- up->y = length;
- up->z = 0;
- S3L_vec3Xmat4(up, m);
- }
-}
-
-void S3L_pixelInfoInit(S3L_PixelInfo* p) {
- p->x = 0;
- p->y = 0;
- p->barycentric[0] = S3L_FRACTIONS_PER_UNIT;
- p->barycentric[1] = 0;
- p->barycentric[2] = 0;
- p->modelIndex = 0;
- p->triangleIndex = 0;
- p->triangleID = 0;
- p->depth = 0;
- p->previousZ = 0;
-}
-
-void S3L_model3DInit(const S3L_Unit* vertices,
- S3L_Index vertexCount,
- const S3L_Index* triangles,
- S3L_Index triangleCount,
- S3L_Model3D* model) {
- model->vertices = vertices;
- model->vertexCount = vertexCount;
- model->triangles = triangles;
- model->triangleCount = triangleCount;
- model->customTransformMatrix = 0;
-
- S3L_transform3DInit(&(model->transform));
- S3L_drawConfigInit(&(model->config));
-}
-
-void S3L_sceneInit(S3L_Model3D* models,
- S3L_Index modelCount,
- S3L_Scene* scene) {
- scene->models = models;
- scene->modelCount = modelCount;
- S3L_cameraInit(&(scene->camera));
-}
-
-void S3L_drawConfigInit(S3L_DrawConfig* config) {
- config->backfaceCulling = 2;
- config->visible = 1;
-}
-
-#ifndef S3L_PIXEL_FUNCTION
-#error Pixel rendering function (S3L_PIXEL_FUNCTION) not specified!
-#endif
-
-static inline void S3L_PIXEL_FUNCTION(S3L_PixelInfo* pixel); // forward decl
-
-/** Serves to accelerate linear interpolation for performance-critical
- code. Functions such as S3L_interpolate require division to compute each
- interpolated value, while S3L_FastLerpState only requires a division for
- the initiation and a shift for retrieving each interpolated value.
-
- S3L_FastLerpState stores a value and a step, both scaled (shifted by
- S3L_FAST_LERP_QUALITY) to increase precision. The step is being added to the
- value, which achieves the interpolation. This will only be useful for
- interpolations in which we need to get the interpolated value in every step.
-
- BEWARE! Shifting a negative value is undefined, so handling shifting of
- negative values has to be done cleverly. */
-typedef struct {
- S3L_Unit valueScaled;
- S3L_Unit stepScaled;
-} S3L_FastLerpState;
-
-#define S3L_getFastLerpValue(state) (state.valueScaled >> S3L_FAST_LERP_QUALITY)
-
-#define S3L_stepFastLerp(state) state.valueScaled += state.stepScaled
-
-static inline S3L_Unit S3L_interpolateBarycentric(S3L_Unit value0,
- S3L_Unit value1,
- S3L_Unit value2,
- S3L_Unit barycentric[3]) {
- return ((value0 * barycentric[0]) + (value1 * barycentric[1]) +
- (value2 * barycentric[2])) /
- S3L_FRACTIONS_PER_UNIT;
-}
-
-void S3L_mapProjectionPlaneToScreen(S3L_Vec4 point,
- S3L_ScreenCoord* screenX,
- S3L_ScreenCoord* screenY) {
- *screenX = S3L_HALF_RESOLUTION_X +
- (point.x * S3L_HALF_RESOLUTION_X) / S3L_FRACTIONS_PER_UNIT;
-
- *screenY = S3L_HALF_RESOLUTION_Y -
- (point.y * S3L_HALF_RESOLUTION_X) / S3L_FRACTIONS_PER_UNIT;
-}
-
-void S3L_zBufferClear(void) {
-#if S3L_Z_BUFFER
- for (uint32_t i = 0; i < S3L_RESOLUTION_X * S3L_RESOLUTION_Y; ++i)
- S3L_zBuffer[i] = S3L_MAX_DEPTH;
-#endif
-}
-
-void S3L_stencilBufferClear(void) {
-#if S3L_STENCIL_BUFFER
- for (uint32_t i = 0; i < S3L_STENCIL_BUFFER_SIZE; ++i)
- S3L_stencilBuffer[i] = 0;
-#endif
-}
-
-void S3L_newFrame(void) {
- S3L_zBufferClear();
- S3L_stencilBufferClear();
-}
-
-/*
- the following serves to communicate info about if the triangle has been split
- and how the barycentrics should be remapped.
-*/
-uint8_t _S3L_projectedTriangleState = 0; // 0 = normal, 1 = cut, 2 = split
-
-#if S3L_NEAR_CROSS_STRATEGY == 3
-S3L_Vec4 _S3L_triangleRemapBarycentrics[6];
-#endif
-
-void S3L_drawTriangle(S3L_Vec4 point0,
- S3L_Vec4 point1,
- S3L_Vec4 point2,
- S3L_Index modelIndex,
- S3L_Index triangleIndex) {
- S3L_PixelInfo p;
- S3L_pixelInfoInit(&p);
- p.modelIndex = modelIndex;
- p.triangleIndex = triangleIndex;
- p.triangleID = (modelIndex << 16) | triangleIndex;
-
- S3L_Vec4 *tPointSS, *lPointSS, *rPointSS; /* points in Screen Space (in
- S3L_Units, normalized by
- S3L_FRACTIONS_PER_UNIT) */
-
- S3L_Unit* barycentric0; // bar. coord that gets higher from L to R
- S3L_Unit* barycentric1; // bar. coord that gets higher from R to L
- S3L_Unit* barycentric2; // bar. coord that gets higher from bottom up
-
- // sort the vertices:
-
-#define assignPoints(t, a, b) \
- { \
- tPointSS = &point##t; \
- barycentric2 = &(p.barycentric[t]); \
- if (S3L_triangleWinding(point##t.x, point##t.y, point##a.x, \
- point##a.y, point##b.x, point##b.y) >= 0) { \
- lPointSS = &point##a; \
- rPointSS = &point##b; \
- barycentric0 = &(p.barycentric[b]); \
- barycentric1 = &(p.barycentric[a]); \
- } else { \
- lPointSS = &point##b; \
- rPointSS = &point##a; \
- barycentric0 = &(p.barycentric[a]); \
- barycentric1 = &(p.barycentric[b]); \
- } \
- }
-
- if (point0.y <= point1.y) {
- if (point0.y <= point2.y)
- assignPoints(0, 1, 2) else assignPoints(2, 0, 1)
- } else {
- if (point1.y <= point2.y)
- assignPoints(1, 0, 2) else assignPoints(2, 0, 1)
- }
-
-#undef assignPoints
-
-#if S3L_FLAT
- *barycentric0 = S3L_FRACTIONS_PER_UNIT / 3;
- *barycentric1 = S3L_FRACTIONS_PER_UNIT / 3;
- *barycentric2 = S3L_FRACTIONS_PER_UNIT - 2 * (S3L_FRACTIONS_PER_UNIT / 3);
-#endif
-
- p.triangleSize[0] = rPointSS->x - lPointSS->x;
- p.triangleSize[1] =
- (rPointSS->y > lPointSS->y ? rPointSS->y : lPointSS->y) - tPointSS->y;
-
- // now draw the triangle line by line:
-
- S3L_ScreenCoord splitY; // Y of the vertically middle point of the triangle
- S3L_ScreenCoord endY; // bottom Y of the whole triangle
- int splitOnLeft; /* whether splitY is the y coord. of left or right
- point */
-
- if (rPointSS->y <= lPointSS->y) {
- splitY = rPointSS->y;
- splitOnLeft = 0;
- endY = lPointSS->y;
- } else {
- splitY = lPointSS->y;
- splitOnLeft = 1;
- endY = rPointSS->y;
- }
-
- S3L_ScreenCoord currentY = tPointSS->y;
-
- /* We'll be using an algorithm similar to Bresenham line algorithm. The
- specifics of this algorithm are among others:
-
- - drawing possibly NON-CONTINUOUS line
- - NOT tracing the line exactly, but rather rasterizing one the right
- side of it, according to the pixel CENTERS, INCLUDING the pixel
- centers
-
- The principle is this:
-
- - Move vertically by pixels and accumulate the error (abs(dx/dy)).
- - If the error is greater than one (crossed the next pixel center), keep
- moving horizontally and substracting 1 from the error until it is less
- than 1 again.
- - To make this INTEGER ONLY, scale the case so that distance between
- pixels is equal to dy (instead of 1). This way the error becomes
- dx/dy * dy == dx, and we're comparing the error to (and potentially
- substracting) 1 * dy == dy. */
-
- int16_t
- /* triangle side:
- left right */
- lX,
- rX, // current x position on the screen
- lDx, rDx, // dx (end point - start point)
- lDy, rDy, // dy (end point - start point)
- lInc, rInc, // direction in which to increment (1 or -1)
- lErr, rErr, // current error (Bresenham)
- lErrCmp, rErrCmp, // helper for deciding comparison (> vs >=)
- lErrAdd, rErrAdd, // error value to add in each Bresenham cycle
- lErrSub,
- rErrSub; // error value to substract when moving in x direction
-
- S3L_FastLerpState lSideFLS, rSideFLS;
-
-#if S3L_COMPUTE_LERP_DEPTH
- S3L_FastLerpState lDepthFLS, rDepthFLS;
-
-#define initDepthFLS(s, p1, p2) \
- s##DepthFLS.valueScaled = p1##PointSS->z << S3L_FAST_LERP_QUALITY; \
- s##DepthFLS.stepScaled = ((p2##PointSS->z << S3L_FAST_LERP_QUALITY) - \
- s##DepthFLS.valueScaled) / \
- (s##Dy != 0 ? s##Dy : 1);
-#else
-#define initDepthFLS(s, p1, p2) ;
-#endif
-
-/* init side for the algorithm, params:
- s - which side (l or r)
- p1 - point from (t, l or r)
- p2 - point to (t, l or r)
- down - whether the side coordinate goes top-down or vice versa */
-#define initSide(s, p1, p2, down) \
- s##X = p1##PointSS->x; \
- s##Dx = p2##PointSS->x - p1##PointSS->x; \
- s##Dy = p2##PointSS->y - p1##PointSS->y; \
- initDepthFLS(s, p1, p2) s##SideFLS.stepScaled = \
- (S3L_FRACTIONS_PER_UNIT << S3L_FAST_LERP_QUALITY) / \
- (s##Dy != 0 ? s##Dy : 1); \
- s##SideFLS.valueScaled = 0; \
- if (!down) { \
- s##SideFLS.valueScaled = S3L_FRACTIONS_PER_UNIT \
- << S3L_FAST_LERP_QUALITY; \
- s##SideFLS.stepScaled *= -1; \
- } \
- s##Inc = s##Dx >= 0 ? 1 : -1; \
- if (s##Dx < 0) { \
- s##Err = 0; \
- s##ErrCmp = 0; \
- } else { \
- s##Err = s##Dy; \
- s##ErrCmp = 1; \
- } \
- s##ErrAdd = S3L_abs(s##Dx); \
- s##ErrSub = s##Dy != 0 ? s##Dy : 1; /* don't allow 0, could lead to an \
- infinite substracting loop */
-
-#define stepSide(s) \
- while (s##Err - s##Dy >= s##ErrCmp) { \
- s##X += s##Inc; \
- s##Err -= s##ErrSub; \
- } \
- s##Err += s##ErrAdd;
-
- initSide(r, t, r, 1) initSide(l, t, l, 1)
-
-#if S3L_PERSPECTIVE_CORRECTION
- /* PC is done by linearly interpolating reciprocals from which the corrected
- velues can be computed. See
- http://www.lysator.liu.se/~mikaelk/doc/perspectivetexture/ */
-
-#if S3L_PERSPECTIVE_CORRECTION == 1
-#define Z_RECIP_NUMERATOR \
- (S3L_FRACTIONS_PER_UNIT * S3L_FRACTIONS_PER_UNIT * S3L_FRACTIONS_PER_UNIT)
-#elif S3L_PERSPECTIVE_CORRECTION == 2
-#define Z_RECIP_NUMERATOR (S3L_FRACTIONS_PER_UNIT * S3L_FRACTIONS_PER_UNIT)
-#endif
- /* ^ This numerator is a number by which we divide values for the
- reciprocals. For PC == 2 it has to be lower because linear
- interpolation scaling would make it overflow -- this results in lower
- depth precision in bigger distance for PC == 2. */
-
- S3L_Unit tPointRecipZ,
- lPointRecipZ, rPointRecipZ, /* Reciprocals of the depth of
- each triangle point. */
- lRecip0, lRecip1, rRecip0, rRecip1; /* Helper variables for swapping
- the above after split. */
-
- tPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(tPointSS->z);
- lPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(lPointSS->z);
- rPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(rPointSS->z);
-
- lRecip0 = tPointRecipZ;
- lRecip1 = lPointRecipZ;
- rRecip0 = tPointRecipZ;
- rRecip1 = rPointRecipZ;
-
-#define manageSplitPerspective(b0, b1) \
- b1##Recip0 = b0##PointRecipZ; \
- b1##Recip1 = b1##PointRecipZ; \
- b0##Recip0 = b0##PointRecipZ; \
- b0##Recip1 = tPointRecipZ;
-#else
-#define manageSplitPerspective(b0, b1) ;
-#endif
-
- // clip to the screen in y dimension:
-
- endY = S3L_min(endY, S3L_RESOLUTION_Y);
-
- /* Clipping above the screen (y < 0) can't be easily done here, will be
- handled inside the loop. */
-
- while (currentY < endY) /* draw the triangle from top to bottom -- the
- bottom-most row is left out because, following
- from the rasterization rules (see start of the
- file), it is to never be rasterized. */
- {
- if (currentY == splitY) // reached a vertical split of the triangle?
- {
-#define manageSplit(b0, b1, s0, s1) \
- S3L_Unit* tmp = barycentric##b0; \
- barycentric##b0 = barycentric##b1; \
- barycentric##b1 = tmp; \
- s0##SideFLS.valueScaled = \
- (S3L_FRACTIONS_PER_UNIT << S3L_FAST_LERP_QUALITY) - \
- s0##SideFLS.valueScaled; \
- s0##SideFLS.stepScaled *= -1; \
- manageSplitPerspective(s0, s1)
-
- if (splitOnLeft) {
- initSide(l, l, r, 0);
- manageSplit(0, 2, r, l)
- } else {
- initSide(r, r, l, 0);
- manageSplit(1, 2, l, r)
- }
- }
-
- stepSide(r) stepSide(l)
-
- if (currentY >= 0) /* clipping of pixels whose y < 0 (can't be
- easily done outside the loop because of the
- Bresenham-like algorithm steps) */
- {
- p.y = currentY;
-
- // draw the horizontal line
-
-#if !S3L_FLAT
- S3L_Unit rowLength = S3L_nonZero(rX - lX - 1); // prevent zero div
-
-#if S3L_PERSPECTIVE_CORRECTION
- S3L_Unit lOverZ, lRecipZ, rOverZ, rRecipZ, lT, rT;
-
- lT = S3L_getFastLerpValue(lSideFLS);
- rT = S3L_getFastLerpValue(rSideFLS);
-
- lOverZ = S3L_interpolateByUnitFrom0(lRecip1, lT);
- lRecipZ = S3L_interpolateByUnit(lRecip0, lRecip1, lT);
-
- rOverZ = S3L_interpolateByUnitFrom0(rRecip1, rT);
- rRecipZ = S3L_interpolateByUnit(rRecip0, rRecip1, rT);
-#else
- S3L_FastLerpState b0FLS, b1FLS;
-
-#if S3L_COMPUTE_LERP_DEPTH
- S3L_FastLerpState depthFLS;
-
- depthFLS.valueScaled = lDepthFLS.valueScaled;
- depthFLS.stepScaled =
- (rDepthFLS.valueScaled - lDepthFLS.valueScaled) / rowLength;
-#endif
-
- b0FLS.valueScaled = 0;
- b1FLS.valueScaled = lSideFLS.valueScaled;
-
- b0FLS.stepScaled = rSideFLS.valueScaled / rowLength;
- b1FLS.stepScaled = -1 * lSideFLS.valueScaled / rowLength;
-#endif
-#endif
-
- // clip to the screen in x dimension:
-
- S3L_ScreenCoord rXClipped = S3L_min(rX, S3L_RESOLUTION_X),
- lXClipped = lX;
-
- if (lXClipped < 0) {
- lXClipped = 0;
-
-#if !S3L_PERSPECTIVE_CORRECTION && !S3L_FLAT
- b0FLS.valueScaled -= lX * b0FLS.stepScaled;
- b1FLS.valueScaled -= lX * b1FLS.stepScaled;
-
-#if S3L_COMPUTE_LERP_DEPTH
- depthFLS.valueScaled -= lX * depthFLS.stepScaled;
-#endif
-#endif
- }
-
-#if S3L_PERSPECTIVE_CORRECTION
- S3L_ScreenCoord i = lXClipped - lX; /* helper var to save one
- substraction in the inner
- loop */
-#endif
-
-#if S3L_PERSPECTIVE_CORRECTION == 2
- S3L_FastLerpState
- depthPC, // interpolates depth between row segments
- b0PC, // interpolates barycentric0 between row segments
- b1PC; // interpolates barycentric1 between row segments
-
- /* ^ These interpolate values between row segments (lines of pixels
- of S3L_PC_APPROX_LENGTH length). After each row segment
- perspective correction is recomputed. */
-
- depthPC.valueScaled =
- (Z_RECIP_NUMERATOR /
- S3L_nonZero(S3L_interpolate(lRecipZ, rRecipZ, i, rowLength)))
- << S3L_FAST_LERP_QUALITY;
-
- b0PC.valueScaled = (S3L_interpolateFrom0(rOverZ, i, rowLength) *
- depthPC.valueScaled) /
- (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
-
- b1PC.valueScaled =
- ((lOverZ - S3L_interpolateFrom0(lOverZ, i, rowLength)) *
- depthPC.valueScaled) /
- (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
-
- int8_t rowCount = S3L_PC_APPROX_LENGTH;
-#endif
-
-#if S3L_Z_BUFFER
- uint32_t zBufferIndex = p.y * S3L_RESOLUTION_X + lXClipped;
-#endif
-
- // draw the row -- inner loop:
-
- for (S3L_ScreenCoord x = lXClipped; x < rXClipped; ++x) {
- int8_t testsPassed = 1;
-
-#if S3L_STENCIL_BUFFER
- if (!S3L_stencilTest(x, p.y))
- testsPassed = 0;
-#endif
- p.x = x;
-
-#if S3L_COMPUTE_DEPTH
-#if S3L_PERSPECTIVE_CORRECTION == 1
- p.depth =
- Z_RECIP_NUMERATOR / S3L_nonZero(S3L_interpolate(
- lRecipZ, rRecipZ, i, rowLength));
-#elif S3L_PERSPECTIVE_CORRECTION == 2
- if (rowCount >= S3L_PC_APPROX_LENGTH) {
- // init the linear interpolation to the next PC correct
- // value
-
- rowCount = 0;
-
- S3L_Unit nextI = i + S3L_PC_APPROX_LENGTH;
-
- if (nextI < rowLength) {
- S3L_Unit nextDepthScaled =
- (Z_RECIP_NUMERATOR /
- S3L_nonZero(S3L_interpolate(lRecipZ, rRecipZ,
- nextI, rowLength)))
- << S3L_FAST_LERP_QUALITY;
-
- depthPC.stepScaled =
- (nextDepthScaled - depthPC.valueScaled) /
- S3L_PC_APPROX_LENGTH;
-
- S3L_Unit nextValue =
- (S3L_interpolateFrom0(rOverZ, nextI, rowLength) *
- nextDepthScaled) /
- (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
-
- b0PC.stepScaled = (nextValue - b0PC.valueScaled) /
- S3L_PC_APPROX_LENGTH;
-
- nextValue =
- ((lOverZ -
- S3L_interpolateFrom0(lOverZ, nextI, rowLength)) *
- nextDepthScaled) /
- (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
-
- b1PC.stepScaled = (nextValue - b1PC.valueScaled) /
- S3L_PC_APPROX_LENGTH;
- } else {
- /* A special case where we'd be interpolating outside
- the triangle. It seems like a valid approach at
- first, but it creates a bug in a case when the
- rasaterized triangle is near screen 0 and can
- actually never reach the extrapolated screen
- position. So we have to clamp to the actual end of
- the triangle here. */
-
- S3L_Unit maxI = S3L_nonZero(rowLength - i);
-
- S3L_Unit nextDepthScaled =
- (Z_RECIP_NUMERATOR / S3L_nonZero(rRecipZ))
- << S3L_FAST_LERP_QUALITY;
-
- depthPC.stepScaled =
- (nextDepthScaled - depthPC.valueScaled) / maxI;
-
- S3L_Unit nextValue =
- (rOverZ * nextDepthScaled) /
- (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
-
- b0PC.stepScaled = (nextValue - b0PC.valueScaled) / maxI;
-
- b1PC.stepScaled = -1 * b1PC.valueScaled / maxI;
- }
- }
-
- p.depth = S3L_getFastLerpValue(depthPC);
-#else
- p.depth = S3L_getFastLerpValue(depthFLS);
- S3L_stepFastLerp(depthFLS);
-#endif
-#else // !S3L_COMPUTE_DEPTH
- p.depth = (tPointSS->z + lPointSS->z + rPointSS->z) / 3;
-#endif
-
-#if S3L_Z_BUFFER
- p.previousZ = S3L_zBuffer[zBufferIndex];
-
- zBufferIndex++;
-
- if (!S3L_zTest(p.x, p.y, p.depth))
- testsPassed = 0;
-#endif
-
- if (testsPassed) {
-#if !S3L_FLAT
-#if S3L_PERSPECTIVE_CORRECTION == 0
- *barycentric0 = S3L_getFastLerpValue(b0FLS);
- *barycentric1 = S3L_getFastLerpValue(b1FLS);
-#elif S3L_PERSPECTIVE_CORRECTION == 1
- *barycentric0 =
- (S3L_interpolateFrom0(rOverZ, i, rowLength) * p.depth) /
- (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
-
- *barycentric1 =
- ((lOverZ - S3L_interpolateFrom0(lOverZ, i, rowLength)) *
- p.depth) /
- (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
-#elif S3L_PERSPECTIVE_CORRECTION == 2
- *barycentric0 = S3L_getFastLerpValue(b0PC);
- *barycentric1 = S3L_getFastLerpValue(b1PC);
-#endif
-
- *barycentric2 =
- S3L_FRACTIONS_PER_UNIT - *barycentric0 - *barycentric1;
-#endif
-
-#if S3L_NEAR_CROSS_STRATEGY == 3
-
- if (_S3L_projectedTriangleState != 0) {
- S3L_Unit newBarycentric[3];
-
- newBarycentric[0] = S3L_interpolateBarycentric(
- _S3L_triangleRemapBarycentrics[0].x,
- _S3L_triangleRemapBarycentrics[1].x,
- _S3L_triangleRemapBarycentrics[2].x, p.barycentric);
-
- newBarycentric[1] = S3L_interpolateBarycentric(
- _S3L_triangleRemapBarycentrics[0].y,
- _S3L_triangleRemapBarycentrics[1].y,
- _S3L_triangleRemapBarycentrics[2].y, p.barycentric);
-
- newBarycentric[2] = S3L_interpolateBarycentric(
- _S3L_triangleRemapBarycentrics[0].z,
- _S3L_triangleRemapBarycentrics[1].z,
- _S3L_triangleRemapBarycentrics[2].z, p.barycentric);
-
- p.barycentric[0] = newBarycentric[0];
- p.barycentric[1] = newBarycentric[1];
- p.barycentric[2] = newBarycentric[2];
- }
-#endif
-
- S3L_PIXEL_FUNCTION(&p);
- } // tests passed
-
-#if !S3L_FLAT
-#if S3L_PERSPECTIVE_CORRECTION
- i++;
-#if S3L_PERSPECTIVE_CORRECTION == 2
- rowCount++;
-
- S3L_stepFastLerp(depthPC);
- S3L_stepFastLerp(b0PC);
- S3L_stepFastLerp(b1PC);
-#endif
-#else
- S3L_stepFastLerp(b0FLS);
- S3L_stepFastLerp(b1FLS);
-#endif
-#endif
- } // inner loop
- } // y clipping
-
-#if !S3L_FLAT
- S3L_stepFastLerp(lSideFLS);
- S3L_stepFastLerp(rSideFLS);
-
-#if S3L_COMPUTE_LERP_DEPTH
- S3L_stepFastLerp(lDepthFLS);
- S3L_stepFastLerp(rDepthFLS);
-#endif
-#endif
-
- ++currentY;
- } // row drawing
-
-#undef manageSplit
-#undef initPC
-#undef initSide
-#undef stepSide
-#undef Z_RECIP_NUMERATOR
-}
-
-void S3L_rotate2DPoint(S3L_Unit* x, S3L_Unit* y, S3L_Unit angle) {
- if (angle < S3L_SIN_TABLE_UNIT_STEP)
- return; // no visible rotation
-
- S3L_Unit angleSin = S3L_sin(angle);
- S3L_Unit angleCos = S3L_cos(angle);
-
- S3L_Unit xBackup = *x;
-
- *x = (angleCos * (*x)) / S3L_FRACTIONS_PER_UNIT -
- (angleSin * (*y)) / S3L_FRACTIONS_PER_UNIT;
-
- *y = (angleSin * xBackup) / S3L_FRACTIONS_PER_UNIT +
- (angleCos * (*y)) / S3L_FRACTIONS_PER_UNIT;
-}
-
-void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 m) {
- S3L_makeScaleMatrix(worldTransform.scale.x, worldTransform.scale.y,
- worldTransform.scale.z, m);
-
- S3L_Mat4 t;
-
- S3L_makeRotationMatrixZXY(worldTransform.rotation.x,
- worldTransform.rotation.y,
- worldTransform.rotation.z, t);
-
- S3L_mat4Xmat4(m, t);
-
- S3L_makeTranslationMat(worldTransform.translation.x,
- worldTransform.translation.y,
- worldTransform.translation.z, t);
-
- S3L_mat4Xmat4(m, t);
-}
-
-void S3L_mat4Transpose(S3L_Mat4 m) {
- S3L_Unit tmp;
-
- for (uint8_t y = 0; y < 3; ++y)
- for (uint8_t x = 1 + y; x < 4; ++x) {
- tmp = m[x][y];
- m[x][y] = m[y][x];
- m[y][x] = tmp;
- }
-}
-
-void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 m) {
- S3L_makeTranslationMat(-1 * cameraTransform.translation.x,
- -1 * cameraTransform.translation.y,
- -1 * cameraTransform.translation.z, m);
-
- S3L_Mat4 r;
-
- S3L_makeRotationMatrixZXY(cameraTransform.rotation.x,
- cameraTransform.rotation.y,
- cameraTransform.rotation.z, r);
-
- S3L_mat4Transpose(r); // transposing creates an inverse transform
-
- S3L_mat4Xmat4(m, r);
-}
-
-int8_t S3L_triangleWinding(S3L_ScreenCoord x0,
- S3L_ScreenCoord y0,
- S3L_ScreenCoord x1,
- S3L_ScreenCoord y1,
- S3L_ScreenCoord x2,
- S3L_ScreenCoord y2) {
- int32_t winding = (y1 - y0) * (x2 - x1) - (x1 - x0) * (y2 - y1);
- // ^ cross product for points with z == 0
-
- return winding > 0 ? 1 : (winding < 0 ? -1 : 0);
-}
-
-/**
- Checks if given triangle (in Screen Space) is at least partially visible,
- i.e. returns false if the triangle is either completely outside the frustum
- (left, right, top, bottom, near) or is invisible due to backface culling.
-*/
-static inline int8_t S3L_triangleIsVisible(S3L_Vec4 p0,
- S3L_Vec4 p1,
- S3L_Vec4 p2,
- uint8_t backfaceCulling) {
-#define clipTest(c, cmp, v) (p0.c cmp(v) && p1.c cmp(v) && p2.c cmp(v))
-
- if ( // outside frustum?
-#if S3L_NEAR_CROSS_STRATEGY == 0
- p0.z <= S3L_NEAR || p1.z <= S3L_NEAR || p2.z <= S3L_NEAR ||
- // ^ partially in front of NEAR?
-#else
- clipTest(z, <=, S3L_NEAR) || // completely in front of NEAR?
-#endif
- clipTest(x, <, 0) || clipTest(x, >=, S3L_RESOLUTION_X) ||
- clipTest(y, <, 0) || clipTest(y, >, S3L_RESOLUTION_Y))
- return 0;
-
-#undef clipTest
-
- if (backfaceCulling != 0) {
- int8_t winding =
- S3L_triangleWinding(p0.x, p0.y, p1.x, p1.y, p2.x, p2.y);
-
- if ((backfaceCulling == 1 && winding > 0) ||
- (backfaceCulling == 2 && winding < 0))
- return 0;
- }
-
- return 1;
-}
-
-#if S3L_SORT != 0
-typedef struct {
- uint8_t modelIndex;
- S3L_Index triangleIndex;
- uint16_t sortValue;
-} _S3L_TriangleToSort;
-
-_S3L_TriangleToSort S3L_sortArray[S3L_MAX_TRIANGES_DRAWN];
-uint16_t S3L_sortArrayLength;
-#endif
-
-void _S3L_projectVertex(const S3L_Model3D* model,
- S3L_Index triangleIndex,
- uint8_t vertex,
- S3L_Mat4 projectionMatrix,
- S3L_Vec4* result) {
- uint32_t vertexIndex = model->triangles[triangleIndex * 3 + vertex] * 3;
-
- result->x = model->vertices[vertexIndex];
- result->y = model->vertices[vertexIndex + 1];
- result->z = model->vertices[vertexIndex + 2];
- result->w = S3L_FRACTIONS_PER_UNIT; // needed for translation
-
- S3L_vec3Xmat4(result, projectionMatrix);
-
- result->w = result->z;
- /* We'll keep the non-clamped z in w for sorting. */
-}
-
-void _S3L_mapProjectedVertexToScreen(S3L_Vec4* vertex, S3L_Unit focalLength) {
- vertex->z = vertex->z >= S3L_NEAR ? vertex->z : S3L_NEAR;
- /* ^ This firstly prevents zero division in the follwoing z-divide and
- secondly "pushes" vertices that are in front of near a little bit forward,
- which makes them behave a bit better. If all three vertices end up exactly
- on NEAR, the triangle will be culled. */
-
- S3L_perspectiveDivide(vertex, focalLength);
-
- S3L_ScreenCoord sX, sY;
-
- S3L_mapProjectionPlaneToScreen(*vertex, &sX, &sY);
-
- vertex->x = sX;
- vertex->y = sY;
-}
-
-/**
- Projects a triangle to the screen. If enabled, a triangle can be potentially
- subdivided into two if it crosses the near plane, in which case two projected
- triangles are returned (the info about splitting or cutting the triangle is
- passed in global variables, see above).
-*/
-void _S3L_projectTriangle(const S3L_Model3D* model,
- S3L_Index triangleIndex,
- S3L_Mat4 matrix,
- uint32_t focalLength,
- S3L_Vec4 transformed[6]) {
- _S3L_projectVertex(model, triangleIndex, 0, matrix, &(transformed[0]));
- _S3L_projectVertex(model, triangleIndex, 1, matrix, &(transformed[1]));
- _S3L_projectVertex(model, triangleIndex, 2, matrix, &(transformed[2]));
-
- _S3L_projectedTriangleState = 0;
-
-#if S3L_NEAR_CROSS_STRATEGY == 2 || S3L_NEAR_CROSS_STRATEGY == 3
- uint8_t infront = 0;
- uint8_t behind = 0;
- uint8_t infrontI[3];
- uint8_t behindI[3];
-
- for (uint8_t i = 0; i < 3; ++i)
- if (transformed[i].z < S3L_NEAR) {
- infrontI[infront] = i;
- infront++;
- } else {
- behindI[behind] = i;
- behind++;
- }
-
-#if S3L_NEAR_CROSS_STRATEGY == 3
- for (int i = 0; i < 3; ++i)
- S3L_vec4Init(&(_S3L_triangleRemapBarycentrics[i]));
-
- _S3L_triangleRemapBarycentrics[0].x = S3L_FRACTIONS_PER_UNIT;
- _S3L_triangleRemapBarycentrics[1].y = S3L_FRACTIONS_PER_UNIT;
- _S3L_triangleRemapBarycentrics[2].z = S3L_FRACTIONS_PER_UNIT;
-#endif
-
-#define interpolateVertex \
- S3L_Unit ratio = \
- ((transformed[be].z - S3L_NEAR) * S3L_FRACTIONS_PER_UNIT) / \
- (transformed[be].z - transformed[in].z); \
- transformed[in].x = transformed[be].x - \
- ((transformed[be].x - transformed[in].x) * ratio) / \
- S3L_FRACTIONS_PER_UNIT; \
- transformed[in].y = transformed[be].y - \
- ((transformed[be].y - transformed[in].y) * ratio) / \
- S3L_FRACTIONS_PER_UNIT; \
- transformed[in].z = S3L_NEAR; \
- if (beI != 0) { \
- beI->x = (beI->x * ratio) / S3L_FRACTIONS_PER_UNIT; \
- beI->y = (beI->y * ratio) / S3L_FRACTIONS_PER_UNIT; \
- beI->z = (beI->z * ratio) / S3L_FRACTIONS_PER_UNIT; \
- ratio = S3L_FRACTIONS_PER_UNIT - ratio; \
- beI->x += (beB->x * ratio) / S3L_FRACTIONS_PER_UNIT; \
- beI->y += (beB->y * ratio) / S3L_FRACTIONS_PER_UNIT; \
- beI->z += (beB->z * ratio) / S3L_FRACTIONS_PER_UNIT; \
- }
-
- if (infront == 2) {
- // shift the two vertices forward along the edge
- for (uint8_t i = 0; i < 2; ++i) {
- uint8_t be = behindI[0], in = infrontI[i];
-
-#if S3L_NEAR_CROSS_STRATEGY == 3
- S3L_Vec4 *beI = &(_S3L_triangleRemapBarycentrics[in]),
- *beB = &(_S3L_triangleRemapBarycentrics[be]);
-#else
- S3L_Vec4 *beI = 0, *beB = 0;
-#endif
-
- interpolateVertex
-
- _S3L_projectedTriangleState = 1;
- }
- } else if (infront == 1) {
- // create another triangle and do the shifts
- transformed[3] = transformed[behindI[1]];
- transformed[4] = transformed[infrontI[0]];
- transformed[5] = transformed[infrontI[0]];
-
-#if S3L_NEAR_CROSS_STRATEGY == 3
- _S3L_triangleRemapBarycentrics[3] =
- _S3L_triangleRemapBarycentrics[behindI[1]];
- _S3L_triangleRemapBarycentrics[4] =
- _S3L_triangleRemapBarycentrics[infrontI[0]];
- _S3L_triangleRemapBarycentrics[5] =
- _S3L_triangleRemapBarycentrics[infrontI[0]];
-#endif
-
- for (uint8_t i = 0; i < 2; ++i) {
- uint8_t be = behindI[i], in = i + 4;
-
-#if S3L_NEAR_CROSS_STRATEGY == 3
- S3L_Vec4 *beI = &(_S3L_triangleRemapBarycentrics[in]),
- *beB = &(_S3L_triangleRemapBarycentrics[be]);
-#else
- S3L_Vec4 *beI = 0, *beB = 0;
-#endif
-
- interpolateVertex
- }
-
-#if S3L_NEAR_CROSS_STRATEGY == 3
- _S3L_triangleRemapBarycentrics[infrontI[0]] =
- _S3L_triangleRemapBarycentrics[4];
-#endif
-
- transformed[infrontI[0]] = transformed[4];
-
- _S3L_mapProjectedVertexToScreen(&transformed[3], focalLength);
- _S3L_mapProjectedVertexToScreen(&transformed[4], focalLength);
- _S3L_mapProjectedVertexToScreen(&transformed[5], focalLength);
-
- _S3L_projectedTriangleState = 2;
- }
-
-#undef interpolateVertex
-#endif // S3L_NEAR_CROSS_STRATEGY == 2
-
- _S3L_mapProjectedVertexToScreen(&transformed[0], focalLength);
- _S3L_mapProjectedVertexToScreen(&transformed[1], focalLength);
- _S3L_mapProjectedVertexToScreen(&transformed[2], focalLength);
-}
-
-void S3L_drawScene(S3L_Scene scene) {
- S3L_Mat4 matFinal, matCamera;
- S3L_Vec4 transformed[6]; // transformed triangle coords, for 2 triangles
-
- const S3L_Model3D* model;
- S3L_Index modelIndex, triangleIndex;
-
- S3L_makeCameraMatrix(scene.camera.transform, matCamera);
-
-#if S3L_SORT != 0
- uint16_t previousModel = 0;
- S3L_sortArrayLength = 0;
-#endif
-
- for (modelIndex = 0; modelIndex < scene.modelCount; ++modelIndex) {
- if (!scene.models[modelIndex].config.visible)
- continue;
-
-#if S3L_SORT != 0
- if (S3L_sortArrayLength >= S3L_MAX_TRIANGES_DRAWN)
- break;
-
- previousModel = modelIndex;
-#endif
-
- if (scene.models[modelIndex].customTransformMatrix == 0)
- S3L_makeWorldMatrix(scene.models[modelIndex].transform, matFinal);
- else {
- S3L_Mat4* m = scene.models[modelIndex].customTransformMatrix;
-
- for (int8_t j = 0; j < 4; ++j)
- for (int8_t i = 0; i < 4; ++i)
- matFinal[i][j] = (*m)[i][j];
- }
-
- S3L_mat4Xmat4(matFinal, matCamera);
-
- S3L_Index triangleCount = scene.models[modelIndex].triangleCount;
-
- triangleIndex = 0;
-
- model = &(scene.models[modelIndex]);
-
- while (triangleIndex < triangleCount) {
- /* Some kind of cache could be used in theory to not project
- perviously already projected vertices, but after some testing
- this was abandoned, no gain was seen. */
-
- _S3L_projectTriangle(model, triangleIndex, matFinal,
- scene.camera.focalLength, transformed);
-
- if (S3L_triangleIsVisible(transformed[0], transformed[1],
- transformed[2],
- model->config.backfaceCulling)) {
-#if S3L_SORT == 0
- // without sorting draw right away
- S3L_drawTriangle(transformed[0], transformed[1], transformed[2],
- modelIndex, triangleIndex);
-
- if (_S3L_projectedTriangleState ==
- 2) // draw potential subtriangle
- {
-#if S3L_NEAR_CROSS_STRATEGY == 3
- _S3L_triangleRemapBarycentrics[0] =
- _S3L_triangleRemapBarycentrics[3];
- _S3L_triangleRemapBarycentrics[1] =
- _S3L_triangleRemapBarycentrics[4];
- _S3L_triangleRemapBarycentrics[2] =
- _S3L_triangleRemapBarycentrics[5];
-#endif
-
- S3L_drawTriangle(transformed[3], transformed[4],
- transformed[5], modelIndex, triangleIndex);
- }
-#else
-
- if (S3L_sortArrayLength >= S3L_MAX_TRIANGES_DRAWN)
- break;
-
- // with sorting add to a sort list
- S3L_sortArray[S3L_sortArrayLength].modelIndex = modelIndex;
- S3L_sortArray[S3L_sortArrayLength].triangleIndex =
- triangleIndex;
- S3L_sortArray[S3L_sortArrayLength].sortValue =
- S3L_zeroClamp(transformed[0].w + transformed[1].w +
- transformed[2].w) >>
- 2;
- /* ^
- The w component here stores non-clamped z.
-
- As a simple approximation we sort by the triangle center
- point, which is a mean coordinate -- we don't actually have
- to divide by 3 (or anything), that is unnecessary for
- sorting! We shift by 2 just as a fast operation to prevent
- overflow of the sum over uint_16t. */
-
- S3L_sortArrayLength++;
-#endif
- }
-
- triangleIndex++;
- }
- }
-
-#if S3L_SORT != 0
-
-#if S3L_SORT == 1
-#define cmp <
-#else
-#define cmp >
-#endif
-
- /* Sort the triangles. We use insertion sort, because it has many
- advantages, especially for smaller arrays (better than bubble sort,
- in-place, stable, simple, ...). */
-
- for (int16_t i = 1; i < S3L_sortArrayLength; ++i) {
- _S3L_TriangleToSort tmp = S3L_sortArray[i];
-
- int16_t j = i - 1;
-
- while (j >= 0 && S3L_sortArray[j].sortValue cmp tmp.sortValue) {
- S3L_sortArray[j + 1] = S3L_sortArray[j];
- j--;
- }
-
- S3L_sortArray[j + 1] = tmp;
- }
-
-#undef cmp
-
- for (S3L_Index i = 0; i < S3L_sortArrayLength;
- ++i) // draw sorted triangles
- {
- modelIndex = S3L_sortArray[i].modelIndex;
- triangleIndex = S3L_sortArray[i].triangleIndex;
-
- model = &(scene.models[modelIndex]);
-
- if (modelIndex != previousModel) {
- // only recompute the matrix when the model has changed
- S3L_makeWorldMatrix(model->transform, matFinal);
- S3L_mat4Xmat4(matFinal, matCamera);
- previousModel = modelIndex;
- }
-
- /* Here we project the points again, which is redundant and slow as
- they've already been projected above, but saving the projected points
- would require a lot of memory, which for small resolutions could be
- even worse than z-bufer. So this seems to be the best way
- memory-wise. */
-
- _S3L_projectTriangle(model, triangleIndex, matFinal,
- scene.camera.focalLength, transformed);
-
- S3L_drawTriangle(transformed[0], transformed[1], transformed[2],
- modelIndex, triangleIndex);
-
- if (_S3L_projectedTriangleState == 2) {
-#if S3L_NEAR_CROSS_STRATEGY == 3
- _S3L_triangleRemapBarycentrics[0] =
- _S3L_triangleRemapBarycentrics[3];
- _S3L_triangleRemapBarycentrics[1] =
- _S3L_triangleRemapBarycentrics[4];
- _S3L_triangleRemapBarycentrics[2] =
- _S3L_triangleRemapBarycentrics[5];
-#endif
-
- S3L_drawTriangle(transformed[3], transformed[4], transformed[5],
- modelIndex, triangleIndex);
- }
- }
-#endif
-}
-
-#endif // guard